Planar Laser-Induced Fluorescence Fuel Imaging During Gas-Turbine Relight

2013 ◽  
Vol 29 (4) ◽  
pp. 961-974 ◽  
Author(s):  
R. W. Read ◽  
J. W. Rogerson ◽  
S. Hochgreb
Author(s):  
Ashwini Karmarkar ◽  
Isaac Boxx ◽  
Jacqueline O'Connor

Abstract Combustion instability, which is the result of a coupling between combustor acoustic modes and unsteady flame heat release rate, is a severely limiting factor in the operability and performance of modern gas turbine engines. This coupling can occur through different coupling pathways, such as flow field fluctuations or equivalence ratio fluctuations. In realistic combustor systems, there are complex hydrodynamic and thermo-chemical processes involved, which can lead to multiple coupling pathways. In this study, we use a model gas turbine combustor with two concentric swirling nozzles of air, separated by a ring of fuel injectors, operating at an elevated pressure of 5 bar. The flow split between the two streams is systematically varied to observe the impact on the flow and flame dynamics. High-speed stereoscopic particle image velocimetry, OH planar laser-induced fluorescence, and acetone planar laser-induced fluorescence are used to obtain information about the velocity field, flame, and fuel-flow behavior, respectively. Depending on the flow conditions, a thermoacoustic oscillation mode or a hydrodynamic mode, identified as the precessing vortex core, is present. Our results show that, for this combustor system, changing the flow split between the two concentric nozzles can alter the dominant harmonic oscillation modes in the system, which can significantly impact the dispersion of fuel into air, thereby modulating the local equivalence ratio of the flame. This insight can be used to design instability control mechanisms in real gas turbine engines.


2000 ◽  
Author(s):  
T. Muruganandam ◽  
Srihari Lakshmi ◽  
A. Ramesh ◽  
S. Viswamurthy ◽  
R. Sujith ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2607
Author(s):  
Siying Chen ◽  
Yuanyuan Chen ◽  
Yinchao Zhang ◽  
Pan Guo ◽  
He Chen ◽  
...  

Although it is quite challenging to image and analyze the spatial distribution of bioaerosols in a confined space, a three-dimensional (3D) modeling system based on the planar laser-induced fluorescence (PLIF) technique is proposed in this paper, which is designed to analyze the temporal and spatial variations of bioaerosol particles in a confined chamber. The system employs a continuous planar laser source to excite the fluoresce, and a scientific complementary metal oxide semiconductor (sCMOS) camera to capture images of 2048 × 2048 pixels at a frame rate of 12 Hz. While a sliding platform is moving back and forth on the track, a set of images are captured at different positions for 3D reconstruction. In this system, the 3D reconstruction is limited to a maximum measurement volume of about 50 cm × 29.7 cm × 42 cm, with a spatial resolution of about 0.58 mm × 0.82 mm × 8.33 mm, and a temporal resolution of 5 s. Experiments were carried out to detect the PLIF signals from fluorescein aerosols in the chamber, and then 3D reconstruction was used to visualize and analyze the diffusion of aerosol particles. The results prove that the system can be applied to clearly reconstruct the 3D distribution and record the diffusion process of aerosol particles in a confined space.


Sign in / Sign up

Export Citation Format

Share Document