How the Nozzle Geometry Impacts Vortex Breakdown in Compressible Swirling-Jet Flows

AIAA Journal ◽  
2015 ◽  
Vol 53 (10) ◽  
pp. 2936-2950 ◽  
Author(s):  
T. Luginsland
Author(s):  
Michael K. Stoellinger ◽  
Stefan Heinz ◽  
Celestin P. Zemtsop ◽  
Harish Gopalan ◽  
Reza Mokhtarpoor

AbstractMany turbulent flow simulations require the use of hybrid methods because LES methods are computationally too expensive and RANS methods are not sufficiently accurate. We consider a recently suggested hybrid RANS-LES model that has a sound theoretical basis: it is systematically derived from a realizable stochastic turbulence model. The model is applied to turbulent swirling and nonswirling jet flow simulations. The results are shown to be in a very good agreement with available experimental data of nonswirling and mildly swirling jet flows. Compared to commonly applied other hybrid RANS-LES methods, our RANS-LES model does not seem to suffer from the ’modeled-stress depletion’ problem that is observed in DES and IDDES simulations of nonswirling jet flows, and it performs better than segregated RANS-LES models. The results presented contribute to a better physical understanding of swirling jet flows through an explanation of conditions for the onset and the mechanism of vortex breakdown.


Author(s):  
J. D. Chenoweth ◽  
B. York ◽  
A. Hosangadi

The ability to accurately model axisymmetric, turbulent swirling jet flows over a variety of inflow conditions is evaluated. The deficiency of the standard k-ε turbulence model in predicting mixing rates in flows with streamline curvature is well known. A relatively straightforward modification to this model is made based on a local value of the flux Richardson number which accounts for the azimuthal velocity and its variation. To evaluate the effectiveness of this modification two different experimental data sets are used to compare the computational results against. All calculations were performed using the structured, density based, CRAFT CFD® code utilizing a preconditioning methodology. Both cases have initial swirl distributions that are equivalent to a solid-body rotation profile, and have swirl numbers that are low enough to remain below the vortex breakdown regime. They also have non-swirling jet data available for the same geometries and operating conditions which allows the increased jet mixing rate of swirling jets over purely axial jets to be confirmed. All calculations showed a significant improvement of centerline velocity decay as well as downstream radial velocity profiles when the Richardson number correction was activated. For the case with turbulence data, the centerline decay of turbulent kinetic energy was also much improved. An important result that was discovered was the extreme sensitivity of the downstream evolution of the jet to the specification of the initial k and ε profiles, highlighting the critical need for a comprehensive experimental characterization of all flow properties at the jet exit.


Author(s):  
Danielle Mason ◽  
Sean Clees ◽  
Mark Frederick ◽  
Jacqueline O’Connor

Abstract Many industrial combustion systems, especially power generation gas turbines, use fuel-lean combustion to reduce NOx emissions. However, these systems are highly susceptible to combustion instability, the coupling between combustor acoustics and heat release rate oscillations of the flame. It has been shown in previous work by the authors that a precessing vortex core (PVC) can suppress shear layer receptivity to external perturbations, reducing the potential for thermoacoustic coupling. The goal of this study is to understand the effect of combustor exit boundary condition on the flow structure of a swirling jet to increase fundamental understanding of how combustor design impacts PVC dynamics. The swirling jet is generated with a radial-entry, variable-angle swirler, and a quartz cylinder is fixed on the dump plane for confinement. Combustor exit constriction plates of different diameters are used to determine the impact of exit boundary condition on the flow field. Particle image velocimetry (PIV) is used to capture the velocity field inside the combustor. Spectral proper orthogonal decomposition, a frequency-resolved eigenvalue decomposition that can identify energetic structures in the flow, is implemented to identify the PVC at each condition in both energy and frequency space. We find that exit boundary diameter affects both the structure of the flow and the dynamics of the PVC. Higher levels of constriction (smaller diameters) force the downstream stagnation point of the vortex breakdown bubble upstream, resulting in greater divergence of the swirling jet. Further, as the exit diameter decreases, the PVC becomes less energetic and less spatially defined. Despite these changes in the base flow and PVC coherence, the PVC frequency is not altered by the exit boundary constriction. These trends will help inform our understanding of the impact of boundary conditions on both static and dynamic flame stability.


Author(s):  
K. Kailasanath ◽  
Junhui Liu ◽  
Ephraim Gutmark ◽  
David Munday ◽  
Steven Martens

In this paper, we present observations on the impact of mechanical chevrons on modifying the flow field and noise emanated by supersonic jet flows. These observations are derived from both a monotonically integrated large-eddy simulation (MILES) approach to simulate the near fields of supersonic jet flows and laboratory experiments. The nozzle geometries used in this research are representative of practical engine nozzles. A finite-element flow solver using unstructured grids allows us to model the nozzle geometry accurately and the MILES approach directly computes the large-scale turbulent flow structures. The emphasis of the work is on “off-design” or non-ideally expanded flow conditions. LES for several total pressure ratios under non-ideally expanded flow conditions were simulated and compared to experimental data. The agreement between the predictions and the measurements on the flow field and near-field acoustics is good. After this initial step on validating the computational methodology, the impact of mechanical chevrons on modifying the flow field and hence the near-field acoustics is being investigated. This paper presents the results to date and further details will be presented at the meeting.


2016 ◽  
Vol 23 (2) ◽  
pp. 301-304 ◽  
Author(s):  
S. V. Alekseenko ◽  
V. M. Dulin ◽  
M. P. Tokarev ◽  
D. M. Markovich

Sign in / Sign up

Export Citation Format

Share Document