Turbulence Modeling for Leading-Edge Vortices: An Enhancement Based on Experimental Data

AIAA Journal ◽  
2021 ◽  
pp. 1-18
Author(s):  
Matteo Moioli ◽  
Christian Breitsamter ◽  
Kaare A. Sørensen
AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 1689-1692 ◽  
Author(s):  
A. M. Mitchell ◽  
P. Molton

2020 ◽  
Vol 32 (12) ◽  
pp. 121903
Author(s):  
Nathaniel H. Werner ◽  
Junshi Wang ◽  
Haibo Dong ◽  
Azar Eslam Panah ◽  
Bo Cheng

1997 ◽  
Author(s):  
Shigeo Hayashibara ◽  
Roy Myose ◽  
L. Miller ◽  
Shigeo Hayashibara ◽  
Roy Myose ◽  
...  

Author(s):  
Tommaso Bacci ◽  
Tommaso Lenzi ◽  
Alessio Picchi ◽  
Lorenzo Mazzei ◽  
Bruno Facchini

Modern lean burn aero-engine combustors make use of relevant swirl degrees for flame stabilization. Moreover, important temperature distortions are generated, in tangential and radial directions, due to discrete fuel injection and liner cooling flows respectively. At the same time, more efficient devices are employed for liner cooling and a less intense mixing with the mainstream occurs. As a result, aggressive swirl fields, high turbulence intensities, and strong hot streaks are achieved at the turbine inlet. In order to understand combustor-turbine flow field interactions, it is mandatory to collect reliable experimental data at representative flow conditions. While the separated effects of temperature, swirl, and turbulence on the first turbine stage have been widely investigated, reduced experimental data is available when it comes to consider all these factors together.In this perspective, an annular three-sector combustor simulator with fully cooled high pressure vanes has been designed and installed at the THT Lab of University of Florence. The test rig is equipped with three axial swirlers, effusion cooled liners, and six film cooled high pressure vanes passages, for a vortex-to-vane count ratio of 1:2. The relative clocking position between swirlers and vanes has been chosen in order to have the leading edge of the central NGV aligned with the central swirler. In order to generate representative conditions, a heated mainstream passes though the axial swirlers of the combustor simulator, while the effusion cooled liners are fed by air at ambient temperature. The resulting flow field exiting from the combustor simulator and approaching the cooled vane can be considered representative of a modern Lean Burn aero engine combustor with swirl angles above ±50 deg, turbulence intensities up to about 28% and maximum-to-minimum temperature ratio of about 1.25. With the final aim of investigating the hot streaks evolution through the cooled high pressure vane, the mean aerothermal field (temperature, pressure, and velocity fields) has been evaluated by means of a five-hole probe equipped with a thermocouple and traversed upstream and downstream of the NGV cascade.


Author(s):  
Pingfan He ◽  
Dragos Licu ◽  
Martha Salcudean ◽  
Ian S. Gartshore

The effect of varying coolant density on film cooling effectiveness for a turbine blade-model was numerically investigated and compared with experimental data. This model had a semi-circular leading edge with four rows of laterally-inclined film cooling orifices positioned symmetrically about the stagnation line. A curvilinear coordinate-based CFD code was developed and used for the numerical investigation. The code used a domain segmentation strategy in conjunction with general curvilinear grids to model the complex blade configuration. A multigrid method was used to accelerate the convergence rate. The time-averaged, variable-density, Navier-Stokes equations together with the energy or scalar equation were solved. Turbulence closure was attained by the standard k–ε model with a near-wall k model. Either air or CO2 was used as coolant in three cases of injection through single rows and alternatively staggered double raws of holes. Two different blowing rates were investigated in each case and compared with experimental data. The experimental results were obtained using a wind tunnel model, and the mass/heat analogy was used to determine the film cooling effectiveness. The higher density of the carbon dioxide coolant (approximately 1.5 times the density of air) in the isothermal mass injection experiments, was used to simulate the effects of injection of a colder air in the corresponding adiabatic heat transfer situation. Good agreement between calculated and measured film cooling effectiveness was found for low blowing ratio M ≤ 0.5 and the effect of density was not significant. At higher blowing ratio M > 1 the calculations consistently overpredict the measured values of film cooling effectiveness.


Sign in / Sign up

Export Citation Format

Share Document