Three-Dimensional Forced Convection Flow Adjacent to Backward-Facing Step

2002 ◽  
Vol 16 (2) ◽  
pp. 222-227 ◽  
Author(s):  
B. F. Armaly ◽  
A. Li ◽  
J. H. Nie
Author(s):  
M Atashafrooz ◽  
SA Gandjalikhan Nassab

This study presents a numerical analysis of three-dimensional laminar forced convection flow of a radiating gas over an inclined backward-facing step in a rectangular duct under bleeding condition. The fluid is treated as a gray, absorbing, emitting, and scattering medium. The three-dimensional Cartesian coordinate system is used to solve the governing equations which are the conservations of mass, momentum, and energy. These equations are solved numerically using the computational fluid dynamic techniques to obtain the temperature and velocity fields, while the blocked-off method is employed to simulate the incline surface. Discretized forms of these equations are obtained by the finite volume method and solved using the SIMPLE algorithm. Since the gas is considered as a radiating medium, besides the convective and conductive terms in the energy equation, the radiative term also presented. For computation of this term, the radiative transfer equation is solved numerically by the discrete ordinates method to find the divergence of radiative heat flux distribution inside the radiating medium. By this numerical procedure, the role of radiation heat transfer on convection flow of a radiating gas which has many engineering applications (for example in heat exchangers and combustion chambers) is studied in detail. Beside, the effects of bleeding coefficient, albedo coefficient, optical thickness, and the radiation–conduction parameter on heat transfer behavior of the system are investigated. Comparison of numerical results with the available data published in the open literature shows a good agreement.


2000 ◽  
Author(s):  
A. Li ◽  
B. F. Armaly

Abstract Results from three-dimensional numerical simulation of laminar, buoyancy assisting, mixed convection airflow adjacent to a backward-facing step in a vertical rectangular duct are presented. The Reynolds number, and duct geometry were kept constant at Re = 200, AR = 8, ER = 2, and S = 1 cm. Heat flux at the wall downstream from the step was kept uniform, but its magnitude was varied to cover a Grashof number (Gr) range between 0.0 to 4000. All the other walls in the duct were kept at adiabatic condition. The flow, upstream of the step, is treated as fully developed and isothermal. The relatively small aspect ratio of the channel is selected specifically to focus on the developments of the three-dimensional mixed convection flow in the separated and reattached flow regions downstream from the step. The presented results focus on the effects of increasing the buoyancy force, by increasing the uniform wall heat flux, on the three-dimensional flow and heat transfer characteristics. The flow and thermal fields are symmetric about the duct’s centerline. Vortex generated near the sidewall, is the major contributor to the three dimensional behavior in the flow domain, and that feature increases as the Grashof number increases. Increasing the Grashof number results in an increase in the Nusselt number, the size of the secondary recirculating flow region, the size of the sidewall vortex, and the spanwise flow from the sidewall toward the center of the channel. On the other hand, the size of the primary reattachment region decreases with increasing the Grashof number. That region lifts away and partially detaches from the downstream wall at high Grashof number flow. The maximum Nusselt number occurs near the sidewalls and not at the center of the channel. The effects of the buoyancy force on the distributions of the three-velocity components, temperature, reattachment region, friction coefficient, and Nusselt number are presented, and compared with 2-D results.


2009 ◽  
Vol 48 (7) ◽  
pp. 1319-1326 ◽  
Author(s):  
S.A. Gandjalikhan Nassab ◽  
R. Moosavi ◽  
S.M. Hosseini Sarvari

Sign in / Sign up

Export Citation Format

Share Document