Cinematic particle image velocimetry of high-Reynolds-number turbulent free shear layer

AIAA Journal ◽  
1996 ◽  
Vol 34 (2) ◽  
pp. 299-308 ◽  
Author(s):  
Tom R. Oakley ◽  
Eric Loth ◽  
Ronald J. Adrian
2018 ◽  
Vol 168 ◽  
pp. 05004 ◽  
Author(s):  
Daniel Duda

PIV (particle image velocimetry) measurement of the air flow past a counter-swirler 53983 (anticlockwise swirler surrounded by clockwise swirler) is performed. The measurement is focused to an area at the boundary between the inner swirling jet and the outer one rotating oppositely. The Reynolds number Re based on the inner swirler diameter ranged form 1.2·103 to 2.1·104. By using band pass filtering the shear layer and vortices in the contact region between counter-swirling jets is highlighted. The shear layer between these regions shortens and decays into vortices as Reynolds number increases.


Author(s):  
Og˘uz Uzol ◽  
Xue Feng Zhang ◽  
Alex Cranstone ◽  
Howard Hodson

The current paper presents an experimental investigation of the interaction between unsteady wakes and the separated boundary layer on the suction side of an ultra-high-lift low-pressure turbine airfoil. Two-dimensional Particle Image Velocimetry (PIV) measurements of the unsteady boundary layer over the T106C LP turbine profile were performed in a low speed linear cascade facility, at selected phases of passing wakes. The wakes are created by moving cylindrical bars across the inlet of the test section. Various phenomena were investigated such as separation and transition characteristics, vortex structures within the unsteady boundary layer, their interaction and effects on the transition process, the corresponding vortex shedding mechanisms and the unsteady behaviour of the separation bubble due to the wake- boundary layer interaction. The current measurements suggest that rollup vortices are generated as the wake approaches the separated shear layer on the suction surface before the wake centerline starts impinging on the blade. At this instant, the bubble is sufficiently high for the free shear layer to roll up into a vortex and the incoming wake is highly distorted (strained) due to the velocity field within the blade passage, and the turbulence distribution within the wake is not symmetrical. Vortices within the boundary layer, identified using the swirl strength distributions calculated from the eigenvalues of the velocity gradient tensor, seem to be coalescing and forming bigger scale structures, which in turn break up into smaller but higher swirl strength eddies. In between the passing wakes, the separation bubble grows in both in height and length, trying to return to its steady state shape.


2017 ◽  
Vol 140 (4) ◽  
Author(s):  
Patrick R. Richard ◽  
Stephen John Wilkins ◽  
Joseph W. Hall

Air traffic volume is expected to triple in the U.S. and Europe by 2025, and as a result, the aerospace industry is facing stricter noise regulations. Apart from the engines, one of the significant contributors of aircraft noise is the deployment of high-lift devices, like leading-edge slats. The unsteady turbulent flow over a leading-edge slat is studied herein. In particular, particle image velocimetry (PIV) measurements were performed on a scale-model wing equipped with a leading-edge slat in the H.J. Irving–J.C.C. Picot Wind Tunnel. Two Reynolds numbers based on wing chord were studied: Re = 6 × 105 and 1.3 × 106. A snapshot proper orthogonal decomposition (POD) analysis indicated that differences in the time-averaged statistics between the two Reynolds numbers were tied to differences in the coherent structures formed in the slat cove shear layer. In particular, the lower Reynolds number flow seemed to be dominated by a large-scale vortex formed in the slat cove that was related to the unsteady flapping and subsequent impingement of the shear layer onto the underside of the slat. A train of smaller, more regular vortices was detected for the larger Reynolds number case, which seemed to cause the shear layer to be less curved and impinge closer to the tail of the slat than for the lower Reynolds number case. The smaller structures are consistent with Rossiter modes being excited within the slat cove. The impingement of the shear layers on and the proximity of the vortices to the slat and the main wing are expected to be strong acoustic dipoles in both cases.


2004 ◽  
Author(s):  
Meredith R. Martin

The transition from laminar to turbulent in-tube flow is studied in this paper. Water flow in a glass tube with an inside diameter of 21.7 mm was investigated by two methods. First, a dye visualization test using a setup similar to the 1883 experiment of Osborne Reynolds was conducted. For the dye visualization, Reynolds numbers ranging from approximately 1000 to 3500 were tested and the transition from laminar to turbulent flow was observed between Reynolds numbers of 2500 and 3500. For the second method, a particle image velocimetry (PIV) system was used to measure the velocity profiles of flow in the same glass tube at Reynolds numbers ranging from approximately 500 to 9000. The resulting velocity profiles were compared to theoretical laminar profiles and empirical turbulent power-law profiles. Good agreement was found between the lower Reynolds number flow and the laminar profile, and between the higher Reynolds number flow and turbulent power-law profile. In between the flow appeared to be in a transition region and deviated some between the two profiles.


2016 ◽  
Vol 804 ◽  
pp. 278-297 ◽  
Author(s):  
J. P. J. Stevenson ◽  
K. P. Nolan ◽  
E. J. Walsh

The free shear layer that separates from the leading edge of a round-nosed plate has been studied under conditions of low (background) and elevated (grid-generated) free stream turbulence (FST) using high-fidelity particle image velocimetry. Transition occurs after separation in each case, followed by reattachment to the flat surface of the plate downstream. A bubble of reverse flow is thereby formed. First, we find that, under elevated (7 %) FST, the time-mean bubble is almost threefold shorter due to an accelerated transition of the shear layer. Quadrant analysis of the Reynolds stresses reveals the presence of slender, highly coherent fluctuations amid the laminar part of the shear layer that are reminiscent of the boundary-layer streaks seen in bypass transition. Instability and the roll-up of vortices then follow near the crest of the shear layer. These vortices are also present under low FST and in both cases are found to make significant contributions to the production of Reynolds stress over the rear of the bubble. But their role in reattachment, whilst important, is not yet fully clear. Instantaneous flow fields from the low-FST case reveal that the bubble of reverse flow often breaks up into two or more parts, thereby complicating the overall reattachment process. We therefore suggest that the downstream end of the ‘separation isoline’ (the locus of zero absolute streamwise velocity that extends unbroken from the leading edge) be used to define the instantaneous reattachment point. A histogram of this point is found to be bimodal: the upstream peak coincides with the location of roll-up, whereas the downstream mode may suggest a ‘flapping’ motion.


Sign in / Sign up

Export Citation Format

Share Document