Explicit Numerical Solution of the Three-Dimensional Incompressible Turbulent Boundary-Layer Equations

AIAA Journal ◽  
1972 ◽  
Vol 10 (9) ◽  
pp. 1216-1223 ◽  
Author(s):  
J. L. EAST ◽  
F. J. PIERCE
1971 ◽  
Vol 22 (4) ◽  
pp. 346-362 ◽  
Author(s):  
J. F. Nash ◽  
R. R. Tseng

SummaryThis paper presents the results of some calculations of the incompressible turbulent boundary layer on an infinite yawed wing. A discussion is made of the effects of increasing lift coefficient, and increasing Reynolds number, on the displacement thickness, and on the magnitude and direction of the skin friction. The effects of the state of the boundary layer (laminar or turbulent) along the attachment line are also considered.A study is made to determine whether the behaviour of the boundary layer can adequately be predicted by a two-dimensional calculation. It is concluded that there is no simple way to do this (as is provided, in the laminar case, by the principle of independence). However, with some modification, a two-dimensional calculation can be made to give an acceptable numerical representation of the chordwise components of the flow.


1967 ◽  
Vol 28 (1) ◽  
pp. 149-151 ◽  
Author(s):  
A. Davey ◽  
D. Schofield

This paper shows the existence of a three-dimensional solution of the boundary-layer equations of viscous incompressible flow in the immediate neighbourhood of a two-dimensional stagnation point of attachment. The numerical solution has been obtained.


1994 ◽  
Vol 05 (02) ◽  
pp. 207-210
Author(s):  
Daniel Wong ◽  
Salahuddin Ahmed

Two-dimensional incompressible turbulent boundary layer flows over a flat plate were predicted using turbulent boundary layer equations. Reynolds stresses were calculated using Cebeci-Smith, Baldwin-Lomax, and Johnson-King eddy viscosity models. Computational results of mean-flow properties based on Cebeci-Smith model and Baldwin-Lomax model are in excellent agreement with experimental data, and, those based on Johnson-King model are not as accurate as the other two models.


Sign in / Sign up

Export Citation Format

Share Document