Three-dimensional flow near a two-dimensional stagnation point

1967 ◽  
Vol 28 (1) ◽  
pp. 149-151 ◽  
Author(s):  
A. Davey ◽  
D. Schofield

This paper shows the existence of a three-dimensional solution of the boundary-layer equations of viscous incompressible flow in the immediate neighbourhood of a two-dimensional stagnation point of attachment. The numerical solution has been obtained.

Author(s):  
D. W. Beard ◽  
K. Walters

AbstractThe Prandtl boundary-layer theory is extended for an idealized elastico-viscous liquid. The boundary-layer equations are solved numerically for the case of two-dimensional flow near a stagnation point. It is shown that the main effect of elasticity is to increase the velocity in the boundary layer and also to increase the stress on the solid boundary.


Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 132 ◽  
Author(s):  
Muhammad Sadiq

In this article, an axisymmetric three-dimensional stagnation point flow of a nanofluid on a moving plate with different slip constants in two orthogonal directions in the presence of uniform magnetic field has been considered. The magnetic field is considered along the axis of the stagnation point flow. The governing Naiver–Stokes equation, along with the equations of nanofluid for three-dimensional flow, are modified using similarity transform, and reduced nonlinear coupled ordinary differential equations are solved numerically. It is observed that magnetic field M and slip parameter λ 1 increase the velocity and decrease the boundary layer thickness near the stagnation point. Also, a thermal boundary layer is achieved earlier than the momentum boundary layer, with the increase in thermophoresis parameter N t and Brownian motion parameter N b . Important physical quantities, such as skin friction, and Nusselt and Sherwood numbers, are also computed and discussed through graphs and tables.


1985 ◽  
Vol 160 ◽  
pp. 257-279 ◽  
Author(s):  
James C. Williams

The three-dimensional steady laminar-boundary-layer equations have been cast in the appropriate form for semisimilar solutions, and it is shown that in this form they have the same structure as the semisimilar form of the two-dimensional unsteady laminar-boundary-layer equations. This similarity suggests that there may be a new type of singularity in solutions to the three-dimensional equations: a singularity that is the counterpart of the Stewartson singularity in certain solutions to the unsteady boundary-layer equations.A family of simple three-dimensional laminar boundary-layer flows has been devised and numerical solutions for the development of these flows have been obtained in an effort to discover and investigate the new singularity. The numerical results do indeed indicate the existence of such a singularity. A study of the flow approaching the singularity indicates that the singularity is associated with the domain of influence of the flow for given initial (upstream) conditions as is prescribed by the Raetz influence principle.


1978 ◽  
Vol 88 (2) ◽  
pp. 241-258 ◽  
Author(s):  
James C. Williams

Solutions have been obtained for a family of unsteady three-dimensional boundary-layer flows which approach separation as a result of the imposed pressure gradient. These solutions have been obtained in a co-ordinate system which is moving with a constant velocity relative to the body-fixed co-ordinate system. The flows studied are those which are steady in the moving co-ordinate system. The boundary-layer solutions have been obtained in the moving co-ordinate system using the technique of semi-similar solutions. The behaviour of the solutions as separation is approached has been used to infer the physical characteristics of unsteady three-dimensional separation.In the numerical solutions of the three-dimensional unsteady laminar boundary-layer equations, subject to an imposed pressure distribution, the approach to separation is characterized by a rapid increase in the number of iterations required to obtain converged solutions at each station and a corresponding rapid increase in the component of velocity normal to the body surface. The solutions obtained indicate that separation is best observed in a co-ordinate system moving with separation where streamlines turn to form an envelope which is the separation line, as in steady three-dimensional flow, and that this process occurs within the boundary layer (away from the wall) as in the unsteady two-dimensional case. This description of three-dimensional unsteady separation is a generalization of the two-dimensional (Moore-Rott-Sears) model for unsteady separation.


Sign in / Sign up

Export Citation Format

Share Document