Two-Dimensional Supersonic Jet Impingement on a Flat Plate

AIAA Journal ◽  
1979 ◽  
Vol 17 (1) ◽  
pp. 4-5 ◽  
Author(s):  
T.-F. Zien ◽  
K.-Y. Chien ◽  
R.T. Driftmyer
AIAA Journal ◽  
2006 ◽  
Vol 44 (11) ◽  
pp. 2691-2699 ◽  
Author(s):  
Yusuke Nakai ◽  
Nobuyuki Fujimatsu ◽  
Kozo Fujii

2010 ◽  
Vol 22 (11) ◽  
pp. 117101 ◽  
Author(s):  
Khaleel Khasawneh ◽  
Hongli Liu ◽  
Chunpei Cai

2005 ◽  
Vol 128 (3) ◽  
pp. 307-310 ◽  
Author(s):  
A. H. Beitelmal ◽  
A. J. Shah ◽  
M. A. Saad

Heat transfer in jet impingement is a complicated phenomenon and a general analytical solution is not available. Typical jet impingement studies are conducted experimentally and best-fit correlations are proposed (Beitelmal, Saad, and Patel [2]; Beitelmal [3]; Beitelmal, Saad, and Patel [4]; Schauer and Eustis [7]; McMurray, Myers, and Uyehara [8], Gardon and Akfirat [9]). Separate solutions for the stagnation region and the wall jet region are then combined to determine the overall heat transfer solution for the impinging jet. In this paper, stagnation and wall jet region solutions for a two-dimensional jet normally impinging on a flat surface are developed using heat transfer relations available in the literature. These solutions are analyzed and compared to previous experimental results (Beitelmal, Saad, and Patel [2]; Beitelmal [3]). The potential flow assumption is used for the fluid dynamics analysis at the stagnation region. For the wall jet region, a comparison was achieved through consideration of the classical analytical solution for parallel flow over a flat plate. Analytical solutions as well as semiempirical solutions for the stagnation region and the wall jet reported by previous investigators were also considered. Predictions for heat transfer in the stagnation region using potential flow assumptions were found to be accurate to within 20%. For the wall jet region, previous correlations predicted by McMurray, Myers, and Uyehara [8] and Nizou [10] were found to be the most accurate. At large values of x∕D, the heat transfer properties in the wall jet are shown to be very similar to those of a turbulent boundary layer over a flat plate. Such a simplified analysis in different regions of an impinging jet using some basic fluid dynamics assumptions can greatly facilitate a prediction of the local Nusselt number.


1988 ◽  
Vol 110 (3) ◽  
pp. 577-582 ◽  
Author(s):  
V. K. Garg ◽  
S. Jayaraj

The laminar boundary layer flow when a two-dimensional slot jet impinges on a flat plate at some angle is analyzed theoretically. The conservation equations in primitive variables are solved using a finite-difference technique. The computed results at 0 and 90 deg angle of impingement are in perfect agreement with the standard solutions available in the literature. The influence of the angle of impingement on the velocity and temperature profiles is studied. The presence of a stagnation point when the plate is not parallel to the oncoming jet is found to affect considerably the local Nusselt number and skin friction coefficient. These parameters attain very large values close to the stagnation point at small angles of impingement. However, far from the stagnation point, they approach values corresponding to a flat plate at zero incidence, irrespective of the angle of jet impingement.


Author(s):  
Soshi Kawai ◽  
Seiji Tsutsumi ◽  
Ryoji Takaki ◽  
Kozo Fujii

Aeroacoustic mechanisms of an axisymmetric over-expanded supersonic jet impinging on a flat plate with and without hole are numerically investigated. High-order weighted compact nonlinear scheme is used to simulate the unsteady flow including shock waves and sound radiation in the near field of the jet. Analyses of unsteady flowfield and related near-sound field reasonably identify three major noise generation mechanisms, that is, noises from Mach wave, shock cell-shear layer interaction and small fluctuations of jet shear layer. Especially, intense noise radiation in the form of Mach waves and its reflection at the plate predominates the noises from the other two finer sources. The simulated distributions of sound source power and its frequency along the jet axis qualitatively well coincide with typical experimental data used in NASA SP-8072. Similar sound pressure spectrum shape is obtained both the cases of flat plate with and without hole, but the case of without hole shows higher SPL by several dB than that of with hole due to the stronger Mach wave radiation. Aeroacoustic flowfield is drastically affected by the Reynolds number because the jet shear layer instability directly causes the strength of acoustic waves.


Sign in / Sign up

Export Citation Format

Share Document