AERODYNAMIC DESIGN CONSIDERATIONS AND WIND TUNNEL TEST OF A HIGH ALTITUDE AIR SAMPLER

1967 ◽  
Author(s):  
HAROLD LARSEN
2009 ◽  
Vol 16-19 ◽  
pp. 862-865 ◽  
Author(s):  
Ying Chao Zhang ◽  
Zhe Zhang ◽  
Shuang Hu Luo ◽  
Jian Hua Tian

With the development of automotive industry of China, more and more new cars are brought out. Then more and more stylists and engineers will take part in car styling to design new car. In the process of car styling, Car aerodynamics is important to its performance. Especially for more excellent handling and stability performance, more aerodynamic analysis and optimization should been done. At first it was introduced that the process of car styling in this paper. The functions of aerodynamics in the process were indicated. Secondly some ways of aerodynamic analysis were put forward. The first one is wind tunnel test and the second one called virtual wind tunnel test. The virtual wind tunnel test is one of the best modern ways of aerodynamic design which apply in the fields of aerodynamic research widely. It was based on computational fluid dynamics. The details of the virtual wind tunnel test simulation were narrated in this paper. Applying the virtual wind tunnel test aerodynamic drag coefficient, velocity contour and pressure distribution were got. Some advices to reduce aerodynamic drag of the design car were put forward. In one word, it is one simple, effective, convenient and fast way for aerodynamic design in car styling process using virtual wind tunnel test.


2018 ◽  
Vol 2018 ◽  
pp. 1-23 ◽  
Author(s):  
Donghun Park ◽  
Yunggyo Lee ◽  
Taehwan Cho ◽  
Cheolwan Kim

Design, wind tunnel test, computational fluid dynamics (CFD) analysis, and flight test data analysis are conducted for the propeller of EAV-3, which is a solar-powered high-altitude long-endurance unmanned aerial vehicle developed by Korea Aerospace Research Institute. The blade element momentum theory, in conjunction with minimum induced loss, is used as a basic design method. Airfoil data are obtained from CFD analysis, which takes into account the low Reynolds number effect. The response surface is evaluated for design variables by using design of experiment and kriging metamodel. The optimization is based on desirability function. A wind tunnel test is conducted on the designed propeller. Numerical analyses are performed by using a commercial CFD code, and results are compared with those obtained from the design code and wind tunnel test data. Flight test data are analyzed based on several approximations and assumptions. The propeller performance is in good agreement with the numerical and measurement data in terms of tendency and behavior. The comparison of data confirms that the design method, wind tunnel test, and CFD analysis used in this study are practically useful and valid for the development of a high-altitude propeller.


2020 ◽  
Vol 33 (8) ◽  
pp. 2123-2132
Author(s):  
Weiguo ZHANG ◽  
Junfeng SUN ◽  
Liangquan WANG ◽  
Jie WU ◽  
Long HE

2021 ◽  
Author(s):  
David F. Castillo Zuñiga ◽  
Alain Giacobini Souza ◽  
Roberto G. da Silva ◽  
Luiz Carlos Sandoval Góes

Sign in / Sign up

Export Citation Format

Share Document