Heat pipe zero gravity payload on ASTRO 8/II

1979 ◽  
Keyword(s):  
1967 ◽  
Vol 4 (11) ◽  
pp. 1556-1557 ◽  
Author(s):  
J. E. DEVERALL ◽  
E. W. SALMI ◽  
R. J. KNAPP
Keyword(s):  

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1616
Author(s):  
Jaehwan Lee ◽  
Dongmin Kim ◽  
Jeongmin Mun ◽  
Seokho Kim

Infrared detectors on satellites and spacecraft require cooling to increase their measurement sensitivity. To efficiently cool infrared detectors in a zero gravity environment and in limited spaces, a cryogenic loop heat pipe (CLHP) can be used to transfer heat over a certain distance by the capillary forces generated from porous wicks without a mechanical power source. The CLHP presented in this study transfers the heat load to a condenser 0.5 m away from an evaporator at temperatures below −150 °C. The CLHP with two evaporators includes a subloop for initial start-up, and uses a pressure reduction reservoir (PRR) for the supercritical start-up from room to cryogenic temperature. Nitrogen is used as the working fluid to verify the thermal behavior of the CLHP, and the heat-transfer capacity according to the nitrogen charging pressure of the PRR is investigated. To simulate a cryogenic environment, the CLHP is installed inside a space environment simulator, including a single-stage GM (Gifford McMahon) cryocooler to cool the condenser. The CLHP is horizontally installed to simulate zero gravity. The heat-transfer characteristics are experimentally evaluated through the loop circulation of the CLHP.


Author(s):  
Haijun Mo ◽  
Hang Zhao ◽  
Xiaowu Wang ◽  
Rui Cao ◽  
Zhenping Wan ◽  
...  

Abstract A kind of stainless-steel heat pipe with sintered fiber wick is investigated with the aim to improve the heat dissipation when it is used in spent fuel pool in nuclear power plant. The effects of test angle, porosity and the filling rate on the heat transfer performance of the heat pipe are studied. At test angle 90°, the permeability plays an important role on the power limit since gravity can provide the necessary driving force. Larger porosity involves with poor heat conductivity although it results in better permeability. When test angle is zero gravity is no longer the driving force. In this case, the evaporation section can still avoid dry burning because part of the evaporation section is dipped in the deionized water. Therefore, permeability and filling ratio are two important factors influencing the power limit. Filling rate determines the vapor flowing space. When test angle is smaller than zero, gravity becomes resistance force. Then the lag tension and the filling rate exert greatest influence on the performance of the heat pipe. Smaller porosity corresponds to smaller contact angle.


AIChE Journal ◽  
1985 ◽  
Vol 31 (12) ◽  
pp. 2059-2065 ◽  
Author(s):  
D. R. Seok ◽  
Sun-Tak Hwang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document