US Coast Guard operational evaluation and operating experience with the Bell Halter surface effect ship

1983 ◽  
Author(s):  
E. SULLIVAN ◽  
K. ZIMMERMAN
1988 ◽  
Vol 100 (3) ◽  
pp. 237-250
Author(s):  
GARY LARIMER ◽  
JOE McCOLLUM ◽  
BENTON SCHAUB ◽  
DONALD LIEW ◽  
CHARLES WHIPPLE

1990 ◽  
Vol 27 (06) ◽  
pp. 337-355
Author(s):  
John L. Allison

A brief introduction to air cushion vehicle (ACV) and surface effect ship (SES) technology is presented, with past and present examples, to show that this technology may now be considered mature. Applicability of ACVs and SESs to transportation on the Great Lakes and rivers of Canada and the U.S. is discussed, with some emphasis on year-round service in the regions affected by ice. An indication of present design capabilities is provided with some examples of application to typical sets of requirements. Future developments are outlined in the light of the rapid expansion of air-supported ferry operation in other parts of the world, and military and Coast Guard applications in the U.S. and Canada. Some data on acquisition and operating costs are presented in comparison with those for other hull forms, with information on the type of technical and port support required for ACV and SES operation. Numerous references are provided to enable the reader to pursue the topics discussed in greater detail than is possible in a short paper.


1991 ◽  
Author(s):  
STOLLAR (R L) AND ASSOCIATES INC DENVER CO
Keyword(s):  

2013 ◽  
Vol 29 (02) ◽  
pp. 84-91
Author(s):  
Stefanos Koullias ◽  
Santiago Balestrini Robinson ◽  
Dimitri N. Mavris

The purpose of this study is to obtain insight into surface effect ship (SES) endurance without reliance on historical data as a function of geometry, displacement, and technology level. First-principle models of the resistance, structures, and propulsion system are developed and integrated to predict large SES endurance and to suggest the directions that future large SESs will take. It is found that large SESs are dominated by structural weight, which indicates the need for advanced materials and complex structures, and that advanced propulsion cycles can increase endurance by up to 33%. SES endurance is shown to be a nonlinear discontinuous function of geometry, displacement, and technology level that cannot be predicted by simplified models or assumptions.


2003 ◽  
Vol 40 (01) ◽  
pp. 42-48
Author(s):  
Chang Doo Jang ◽  
Ho Kyung Kim ◽  
Ha Cheol Song

A surface effect ship is known to be comparable to a high-speed ship. For the structural design of surface effect ships, advanced design methods are needed which can reflect the various loading conditions different from those of conventional ships. Also, minimum weight design is essential because hull weight significantly affects the lift, thrust powering and high-speed performance. This paper presents the procedure of optimum structural design and a computer program to minimize the hull weight of surface effect ships built of composite materials. By using the developed computer program, the optimum structural designs for three types of surface effect ships—built of sandwich plate only, stiffened single skin plate only, and both plates—are carried out and the efficiency of each type is investigated in terms of weight. The computer program, developed herein, successfully reduced the hull weight of surface effect ships by 15–30% compared with the original design. Numerical results of optimum structural designs are presented and discussed.


2010 ◽  
Vol 1 (1) ◽  
pp. 3 ◽  
Author(s):  
Hiromichi Akimoto ◽  
Syozo Kubo ◽  
Makoto Kanehira

Sign in / Sign up

Export Citation Format

Share Document