scholarly journals Reconstruction of a three-dimensional, transonic rotor flow field from holographic interferogram data

Author(s):  
Y. YU ◽  
F. BECKER ◽  
J. KITTLESON
1993 ◽  
Vol 115 (1) ◽  
pp. 128-136 ◽  
Author(s):  
J. Zeschky ◽  
H. E. Gallus

Detailed measurements have been performed in a subsonic, axial-flow turbine stage to investigate the structure of the secondary flow field and the loss generation. The data include the static pressure distribution on the rotor blade passage surfaces and radial-circumferential measurements of the rotor exit flow field using three-dimensional hot-wire and pneumatic probes. The flow field at the rotor outlet is derived from unsteady hot-wire measurements with high temporal and spatial resolution. The paper presents the formation of the tip clearance vortex and the passage vortices, which are strongly influenced by the spanwise nonuniform stator outlet flow. Taking the experimental values for the unsteady flow velocities and turbulence properties, the effect of the periodic stator wakes on the rotor flow is discussed.


2002 ◽  
Vol 18 (5) ◽  
pp. 1003-1011 ◽  
Author(s):  
Pong-Jeu Lu ◽  
Dartzi Pan ◽  
Yi-Di Yu

1988 ◽  
Author(s):  
D. P. Miller ◽  
A. C. Bryans

It is the purpose of this paper to examine the flow fields in an advanced modern transonic rotor design using both axisymmetric and three dimensional techniques. Also, to determine the deviation of the axisymmetric flow from three-dimensional flow field and whether this seriously affects the results. Inviscid Euler solvers are now widely used to analyze transonic flows through turbomachines giving a reasonably accurate indication of the flow field in blade passages. Although viscous effects are important, the inviscid analysis provides significant knowledge of the flow field which is essential to transonic design. The blade-to-blade loading and work distributions are determined quite realistically by the 3-D and quasi-3-D inviscid analyses. Through-flow and blade-to-blade inviscid solutions are presented for a highly loaded transonic rotor. Numerical solutions for various transonic rotor designs operating at peak efficiency are also compared with test data.


1995 ◽  
Vol 40 (1) ◽  
pp. 83-86
Author(s):  
Valana L. Wells ◽  
Thomas E. Vincent ◽  
John W. Rutherford

Author(s):  
J. Zeschky ◽  
H. E. Gallus

Detailed measurements have been performed in a subsonic, axial-flow turbine stage to investigate the structure of the secondary flow field and the loss generation. The data includes the static pressure distribution on the rotor blade passage surfaces and radial-circumferential measurements of the rotor exit flow field using three-dimensional hot-wire and pneumatic probes. The flow field at the rotor outlet is derived from unsteady hot-wire measurements with high temporal and spatial resolution. The formation of the tip clearance vortex and the passage vortices is presented, which are strongly influenced by the spanwise nonuniform stator outlet flow. Taking the experimental values for the unsteady flow velocities and turbulence properties, the effect of the periodic stator wakes on the rotor flow is discussed.


Author(s):  
Eric Savory ◽  
Norman Toy ◽  
Shiki Okamoto ◽  
Yoko Yamanishi

2017 ◽  
Author(s):  
Adnan Ismael ◽  
Hamid Hussein ◽  
Mohammed Tareq ◽  
Mustafa Gunal

2009 ◽  
Vol 24 (3) ◽  
pp. 342-350 ◽  
Author(s):  
Ali Vakil ◽  
Arash Olyaei ◽  
Sheldon I. Green

Sign in / Sign up

Export Citation Format

Share Document