Gibbs vector kinematics and inverse dynamics for decoupled spacecraft attitude maneuvers

Author(s):  
T. DWYER, III
Author(s):  
Fabio Celani ◽  
Renato Bruni

AbstractThis work presents an approach to spacecraft attitude motion planning which guarantees rest-to-rest maneuvers while satisfying pointing constraints. Attitude is represented on the group of three dimensional rotations. The angular velocity is expressed as weighted sum of some basis functions, and the weights are obtained by solving a constrained minimization problem in which the objective is the maneuvering time. However, the analytic expressions of objective and constraints of this minimization problem are not available. To solve the problem despite this obstacle, we propose to use a derivative-free approach based on sequential penalty. Moreover, to avoid local minima traps during the search, we propose to alternate phases in which two different objective functions are pursued. The control torque derived from the spacecraft inverse dynamics is continuously differentiable and vanishes at its endpoints. Results on practical cases taken from the literature demonstrate advantages over existing approaches.


2020 ◽  
Vol 11 (1) ◽  
pp. 353
Author(s):  
Thomas Flayols ◽  
Andrea Del Prete ◽  
Majid Khadiv ◽  
Nicolas Mansard ◽  
Ludovic Righetti

Contacts between robots and environment are often assumed to be rigid for control purposes. This assumption can lead to poor performance when contacts are soft and/or underdamped. However, the problem of balancing on soft contacts has not received much attention in the literature. This paper presents two novel approaches to control a legged robot balancing on visco-elastic contacts, and compares them to other two state-of-the-art methods. Our simulation results show that performance heavily depends on the contact stiffness and the noises/uncertainties introduced in the simulation. Briefly, the two novel controllers performed best for soft/medium contacts, whereas “inverse-dynamics control under rigid-contact assumptions” was the best one for stiff contacts. Admittance control was instead the most robust, but suffered in terms of performance. These results shed light on this challenging problem, while pointing out interesting directions for future investigation.


Sign in / Sign up

Export Citation Format

Share Document