Spacecraft Attitude Stabilization Using Nonlinear Delayed Multiactuator Control and Inverse Dynamics

2013 ◽  
Vol 36 (5) ◽  
pp. 1440-1452 ◽  
Author(s):  
Morad Nazari ◽  
Eric A. Butcher ◽  
Hanspeter Schaub
Automatica ◽  
2019 ◽  
Vol 109 ◽  
pp. 108553 ◽  
Author(s):  
Alexander Frias ◽  
Anton H.J. de Ruiter ◽  
Krishna Dev Kumar

Author(s):  
Bing Xiao ◽  
Qinglei Hu ◽  
Michael I. Friswell

This paper investigates the design of spacecraft attitude stabilization controllers that are robust against actuator faults and external disturbances. A nominal controller is developed initially, using the adaptive backstepping technique, to stabilize asymptotically the spacecraft attitude when the actuators are fault-free. Additive faults and the partial loss of actuator effectiveness are considered simultaneously and an auxiliary controller is designed in addition to the nominal controller to compensate for the system faults. This auxiliary controller does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online. The attitude orientation and angular velocity of the closed-loop system asymptotically converge to zero despite actuator faults providing the nominal attitude system is asymptotically stable. Numerical simulation results are presented that demonstrate the closed-loop performance benefits of the proposed control law and illustrate its robustness to external disturbances and actuator faults.


Sign in / Sign up

Export Citation Format

Share Document