Analysis of molecular mixing and chemical reaction in a mixing layer

Author(s):  
B. CETEGEN ◽  
W. SIRIGNANO
1991 ◽  
Vol 233 ◽  
pp. 211-242 ◽  
Author(s):  
R. W. Bilger ◽  
L. R. Saetran ◽  
L. V. Krishnamoorthy

Reaction in a scalar mixing layer in grid-generated turbulence is studied experimentally by doping half of the flow with nitric oxide and the other half with ozone. The flow conditions and concentrations are such that the chemical reaction is passive and the flow and chemical timescales are of the same order. Conserved scalar theory for such flows is outlined and further developed; it is used as a basis for presentation of the experimental results. Continuous measurements of concentration are limited in their spatial and temporal resolution but capture sufficient of their spectra for adequate second-order correlations to be made. Two components of velocity have been measured simultaneously with hot-wire anemometry. Conserved scalar mixing results, deduced from reacting and non-reacting measurements of concentration, show the independence of concentration level and concentration ratio expected for passive reacting flow. The results are subject to several limitations due to the necessary experimental compromises, but they agree generally with measurements made in thermal mixing layers. Reactive scalar statistics are consistent with the realizability constraints obtainable from conserved scalar theory where such constraints apply, and otherwise are generally found to lie between the conserved scalar theory limits for frozen and very fast chemistry. It is suggested that Toor's (1969) closure for the mean chemical reaction rate could be improved by interpolating between the frozen and equilibrium values for the covariance. The turbulent fluxes of the reactive scalars are found to approximately obey the gradient model but the value of the diffusivity is found to depend on the Damköhler number.


Author(s):  
Ruru Matsuo ◽  
Ryosuke Matsumoto

This study focused on the diffusion and mixing phenomena investigated by using luminol chemiluminescence (CL) to estimate the local chemical reaction rate in the T-junction microchannel. Generally, the degree of mixing in microchannel is calculated by the deviation of the obtained concentration profiles from the uniform concentration profile by using fluorescence technique. Thus, the degree of mixing is a macroscopic estimate for the whole microchannel, which is inappropriate for understanding the diffusion and mixing phenomena in the mixing layer. In this study, the luminol CL reaction is applied to visualize the local chemical reaction and to estimate the local diffusion and mixing phenomena at an interface between two liquids in microchannel. Luminol emits blue chemiluminescence when it reacts with the hydrogen peroxide at the mixing layer. Experiments were carried out on the T-junction microchannel with 200 microns in width and 50 microns in depth casted in the PDMS chip. The chemiluminescence intensity profiles clearly show the mixing layer at an interface between two liquids. The experimental results are compared with the results of numerical simulation that involves solving the mass transport equations including the chemical reaction term. By calibrating CL intensity to the chemical reaction rate estimated by the numerical simulation, the local chemical reaction profile can be quantitatively estimated from the CL intensity profile.


Author(s):  
Tomomi Uchiyama ◽  
Naohiro Otsuki

This paper presents a particle method for free turbulent reacting flows. The vorticity and concentration fields are discretized into the vortex and concentration elements, respectively, and the behavior of the elements is calculated with the Lagrangian method. The chemical reaction is estimated through the Lagrangian calculation for the strength of concentration element. The particle method is applied to simulate a plane mixing layer with a single-step and irreversible chemical reaction of non-premixed reactants so as to discuss the applicability.


2000 ◽  
Vol 408 ◽  
pp. 39-52 ◽  
Author(s):  
KOUJI NAGATA ◽  
SATORU KOMORI

The effects of unstable thermal stratification and mean shear on chemical reaction and turbulent mixing were experimentally investigated in reacting and non-reacting liquid mixing-layer flows downstream of a turbulence-generating grid. Experiments were carried out under three conditions: unsheared neutrally stratified, unsheared unstably stratified and sheared neutrally stratified. Instantaneous velocity and concentration were simultaneously measured using the combination of a laser-Doppler velocimeter and a laser-induced fluorescence technique. The results show that the turbulent mixing is enhanced at both large and small scales by buoyancy under unstably stratified conditions and therefore the chemical reaction is strongly promoted. The mean shear acts to enhance the turbulent mixing mainly at large scales. However, the chemical reaction rate in the sheared flow is not as large as in the unstably stratified case with the same turbulence level, since the mixing at small scales in the sheared neutrally stratified flow is weaker than that in the unsheared unstably stratified flow. The unstable stratification is regarded as a better tool to attain unsheared mixing since the shearing stress acting on the fluid is much weaker in the unstably stratified flow than in the sheared flow.


2005 ◽  
Vol 31 (7) ◽  
pp. 843-866 ◽  
Author(s):  
Takenobu Michioka ◽  
Ryoichi Kurose ◽  
Kouichi Sada ◽  
Hisao Makino

2015 ◽  
Vol 784 ◽  
pp. 74-108 ◽  
Author(s):  
César Huete ◽  
Antonio L. Sánchez ◽  
Forman A. Williams ◽  
Javier Urzay

Ignition in a supersonic mixing layer interacting with an oblique shock wave is investigated analytically and numerically under conditions such that the post-shock flow remains supersonic. The study requires consideration of the structure of the post-shock ignition kernel that is found to exist around the point of maximum temperature, which may be located either near the edge of the mixing layer or in its interior, depending on the profiles of the fuel concentration, temperature and Mach number across the mixing layer. The ignition kernel displays a balance between the rates of chemical reaction and of post-shock flow expansion, including the acoustic interactions of the chemical heat release with the shock wave, leading to increased front curvature. The analysis, which adopts a one-step chemistry model with large activation energy, indicates that ignition develops as a fold bifurcation, the turning point in the diagram of the peak perturbation induced by the chemical reaction as a function of the Damköhler number providing the critical conditions for ignition. While an explicit formula for the critical Damköhler number for ignition is derived when ignition occurs in the interior of the mixing layer, under which condition the ignition kernel is narrow in the streamwise direction, numerical integration is required for determining ignition when it occurs at the edge, under which condition the kernel is no longer slender. Subsequent to ignition, for the Arrhenius chemistry addressed, the lead shock will rapidly be transformed into a thin detonation on the fuel side of the ignition kernel, and, under suitable conditions, a deflagration may extend far downstream, along with the diffusion flame that must separate the rich and lean reaction products. The results can be helpful in describing supersonic combustion for high-speed propulsion.


Sign in / Sign up

Export Citation Format

Share Document