Conjugate conduction/convection/nucleate-boiling heat transfer with a high-speed boundary layer

Author(s):  
FREDERICK SHOPE
2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Aritra Sur ◽  
Yi Lu ◽  
Carmen Pascente ◽  
Paul Ruchhoeft

Nucleate boiling heat transfer depends on various aspects of the bubble ebullition, such as the bubble nucleation, growth and departure. In this work, a synchronized high-speed optical imaging and infrared (IR) thermography approach was employed to study the ebullition process of a single bubble on a hydrophilic surface. The boiling experiments were conducted at saturated temperature and atmospheric pressure conditions. De-ionized (DI) water was used as the working fluid. The boiling device was made of a 385-um thick silicon wafer. A thin film heater was deposited on one side, and the other side was used as the boiling surface. The onset of nucleate boiling (ONB) occurs at a wall superheat of ΔTsup= 12 °C and an applied heat flux of q" = 35.9 kW/m2. The evolution of the wall heat flux distribution was obtained from the IR temperature measurements, which clearly depicts the existence of the microlayer near the three-phase contact line of the nucleate bubble. The results suggest that, during the bubble growth stage, the evaporation in the microlayer region contributes dominantly to the nucleate boiling heat transfer; however, once the bubble starts to depart from the boiling surface, the microlayer quickly vanishes, and the transient conduction and the microconvection become the prevailing heat transfer mechanisms.


Author(s):  
Mohamed S. El-Genk ◽  
Mahyar Pourghasemi

Abstract Pool boiling experiments are performed to investigate the effects of inclination angle, θ, and average roughness, Ra, of uniformly heated 10 × 10 mm copper surfaces on saturation boiling of HFE-7000 dielectric liquid. Ra varied from 0.039 to 0.1.44 μm and θ from 0° (upward facing) to 180° (downward facing). In addition, high speed images and still photographs of nucleate boiling in the various regions and near CHF are captured to assist the interpretation of experimental results. The values of CHF and the maximum nucleate boiling heat transfer coefficient, hMNB, which occurs near the fully developed nucleate boiling region, increase with increasing Ra and/or decreasing θ. The corresponding surface superheats, however, decrease with increasing θ and/or Ra. In the upward facing orientation, CHF increases from ∼20.7 to ∼30.9 W/cm2 with increasing Ra from 0.039 to 0.144 μm, and the corresponding CHF values in the downward facing orientation are 7.1 and 8.9 W/cm2, respectively. Nucleate boiling heat transfer coefficient, hNB, in the discrete bubbles region at low surface superheats increases, while in the fully developed nucleate boiling region at high superheats it increases with increasing Ra and/or decreasing θ. The developed correlations for CHF and hMNB and corresponding superheats, as functions of Ra and θ, are in good agreement with the experimental data.


Author(s):  
Ryo Hateruma ◽  
Takato Sato ◽  
Yasuo Koizumi ◽  
Hiroyasu Ohtake

Pool boiling heat transfer experiments were performed by using the well-controlled/defined heat transfer surface for water. Uni-size and -shape artificial cavities were created on the mirror-finished silicon plate by utilizing the MEMS technology. Experimental results agreed well with what were predicted by the traditional boiling theory. The mirror-finished surface showed only the tendency of natural circulation heat transfer. The artificial-cavity heat transfer surface followed the pool-nucleate boiling trend. The onset of the pool-nucleate boiling was well predicted by the traditional pool-nucleate boiling theory. These results indicated that the artificial cavities behave just like natural cavities. The results indicated the artificial cavities are quite useful and promising to examine the true features of complicated boiling that have been overshadowed by complicatedness. From recorded high speed video pictures, the coalescence of bubbles that were growing on the cavities were classified into four categories; the normal lift (no coalescence), the vertical coalescence, the declining coalescence and the horizontal coalescence. As the cavity interval was increased, the horizontal coalescence decreases to zero, the vertical coalescence also decreases, and on the contrary to these, vertical coalescence and normal lift increase. The cavity interval 3 mm (S/Lc ≈ 1.2) seemed to be the border whether the horizontal coalescence occurs or not.


Author(s):  
Boming Yu

In the past three decades, fractal geometry and technique have received considerable attention due to its wide applications in sciences and technologies such as in physics, mathematics, geophysics, oil recovery, material science and engineering, flow and heat and mass transfer in porous media etc. The fractal geometry and technique may become particularly powerful when they are applied to deal with random and disordered media such as porous media, nanofluids, nucleate boiling heat transfer. In this paper, a summary of recent advances is presented in the areas of heat and mass transfer in fractal media by fractal geometry technique. The present overview includes a brief summary of the fractal geometry technique applied in the areas of heat and mass transfer; thermal conductivities of porous media and nanofluids; nucleate boiling heat transfer. A few comments are made with respect to the theoretical studies that should be made in the future.


Author(s):  
Chien-Yuh Yang ◽  
Chien-Fu Liu

Numerous researches have been developed for pool boiling on microporous coated surface in the past decade. The nucleate boiling heat transfer was found to be increased by up to 4.5 times than that on uncoated surface. Recently, the two-phase micro heat exchangers have been considered for high flux electronic devices cooling. The enhancement techniques for improving the nucleate boiling heat transfer performance in the micro heat exchangers have gotten more importance. Previous studies of microporous coatings, however, have been restricted to boiling in unconfined space. No studies have been made on the feasibility of using microporous coatings for enhancing boiling in confined spaces. This study provides an experimental observation of the vapor generation and leaving processes on microporous coatings surface in a 1-mm confined space. It would be helpful for understanding the mechanism of boiling heat transfer and improving the design of two-phase micro heat exchangers. Aluminum particles of average diameter 20 μm were mixed with a binder and a carrier to develop a 150 μm thickness boiling enhancement paint on a 3.0 cm by 3.0 cm copper heating surface. The heating surface was covered by a thin glass plate with a 1 mm spacer to form a 1 mm vertical narrow space for the test section. The boiling phenomenon was recorded by a high speed camera. In addition to the three boiling regimes observed by Bonjour and Lallemand [1], i.e., isolated deformed bubbles, coalesced bubbles and partial dryout at low, moderate and high heat fluxes respectively in unconfined space, a suction and blowing process was observed at the highest heat flux condition. Owing to the space confinement, liquid was sucked and vapor was expelled periodically during the bubble generation process. This mechanism significantly enhanced the boiling heat transfer performance in confined space.


2012 ◽  
Vol 550-553 ◽  
pp. 2913-2916 ◽  
Author(s):  
Jin Liang Tao ◽  
Xin Liang Wang ◽  
Pei Hua Shi ◽  
Xiao Ping Shi

In this paper, a new porous coating was formed directly on the surface of titanium metal via anodic oxidation. And by the SEM, the morphology of the coating, which is composed of well-ordered perpendicular nanotubes, was characterized. Moreover, taking deionized water as the test fluid, a visualization study of the coating on its pool boiling heat transfer performance was made. The results demonstrated that compared with the smooth surface, the nucleate boiling heat transfer coefficient can increase 3 times while the nucleate boiling super heat was reduced 30%.


Sign in / Sign up

Export Citation Format

Share Document