Bubble Ebullition on a Hydrophilic Surface

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Aritra Sur ◽  
Yi Lu ◽  
Carmen Pascente ◽  
Paul Ruchhoeft

Nucleate boiling heat transfer depends on various aspects of the bubble ebullition, such as the bubble nucleation, growth and departure. In this work, a synchronized high-speed optical imaging and infrared (IR) thermography approach was employed to study the ebullition process of a single bubble on a hydrophilic surface. The boiling experiments were conducted at saturated temperature and atmospheric pressure conditions. De-ionized (DI) water was used as the working fluid. The boiling device was made of a 385-um thick silicon wafer. A thin film heater was deposited on one side, and the other side was used as the boiling surface. The onset of nucleate boiling (ONB) occurs at a wall superheat of ΔTsup= 12 °C and an applied heat flux of q" = 35.9 kW/m2. The evolution of the wall heat flux distribution was obtained from the IR temperature measurements, which clearly depicts the existence of the microlayer near the three-phase contact line of the nucleate bubble. The results suggest that, during the bubble growth stage, the evaporation in the microlayer region contributes dominantly to the nucleate boiling heat transfer; however, once the bubble starts to depart from the boiling surface, the microlayer quickly vanishes, and the transient conduction and the microconvection become the prevailing heat transfer mechanisms.

Author(s):  
Muhamad Zuhairi Sulaiman ◽  
Masahiro Takamura ◽  
Kazuki Nakahashi ◽  
Tomio Okawa

Boiling heat transfer (BHT) and critical heat flux (CHF) performance were experimentally studied for saturated pool boiling of water-based nanofluids. In present experimental works, copper heaters of 20 mm diameter with titanium-oxide (TiO2) nanocoated surface were produced in pool boiling of nanofluid. Experiments were performed in both upward and downward facing nanofluid coated heater surface. TiO2 nanoparticle was used with concentration ranging from 0.004 until 0.4 kg/m3 and boiling time of tb = 1, 3, 10, 20, 40, and 60 mins. Distilled water was used to observed BHT and CHF performance of different nanofluids boiling time and concentration configurations. Nucleate boiling heat transfer observed to deteriorate in upward facing heater, however; in contrast effect of enhancement for downward. Maximum enhancements of CHF for upward- and downward-facing heater are 2.1 and 1.9 times, respectively. Reduction of mean contact angle demonstrate enhancement on the critical heat flux for both upward-facing and downward-facing heater configuration. However, nucleate boiling heat transfer shows inconsistency in similar concentration with sequence of boiling time. For both downward- and upward-facing nanocoated heater's BHT and CHF, the optimum configuration denotes by C = 400 kg/m3 with tb = 1 min which shows the best increment of boiling curve trend with lowest wall superheat ΔT = 25 K and critical heat flux enhancement of 2.02 times.


Author(s):  
Yuhao Lin ◽  
Junye Li ◽  
Kan Zhou ◽  
Wei Li ◽  
Kuang Sheng ◽  
...  

Abstract The micro structured surfaces have significant impact on the flow patterns and heat transfer mechanisms during the flow boiling process. The hydrophobic surface promotes bubble nucleation while the hydrophilic surface supplies liquid to a heating surface, thus there is a trade-off between a hydrophobic and a hydrophilic surface. To examine the effect of heterogeneous wetting surface on flow boiling process, an experimental investigation of flow boiling in a rectangular vertical narrow microchannel with the heterogeneous wetting surface was conducted with deionized water as the working fluid. The heat transfer characteristics of flow boiling in the microchannel was studied and the flow pattern was photographed with a high-speed camera. The onset of flow boiling and heat transfer coefficient were discussed with the variation of heatfluxes and mass fluxes, the trends of which were analyzed along with the flow patterns. During the boiling process, the dominated heat transfer mechanism was nucleate boiling, with numerous nucleate sites between the hydrophilic/hydrophobic stripes and on the hydrophobic ones. In the meantime, after the merged bubbles were constrained by the channel walls, it would be difficult for them to expand towards upstream since they were restricted by the contact line between hydrophilic/hydrophobic stripes, thereby reduce the flow instability and achieve remarkable heat transfer performance.


2020 ◽  
Vol 2 (1) ◽  
pp. 247-252
Author(s):  
Łukasz J. Orman ◽  
Norbert Radek ◽  
Jacek Pietraszek ◽  
Dariusz Gontarski

AbstractThe paper discusses nucleate boiling heat transfer on meshed surfaces during pool boiling of distilled water and ethyl alcohol of very high purity. It presents a correlation for heat flux developed for heaters covered with microstructural coatings made of meshes. The experimental results have been compared with the calculation results performed using the correlation and have been followed by discussion. Conclusions regarding the heat flux determination method have been drawn with the particular focus on the usefulness of the considered model for heat flux calculations on samples with sintered mesh layers.


1959 ◽  
Vol 81 (3) ◽  
pp. 230-236 ◽  
Author(s):  
R. Siegel ◽  
C. Usiskin

A photographic study was made to determine the qualitative effect of zero gravity on the mechanism of boiling heat transfer. The experimental equipment included a container for boiling water and a high-speed motion-picture camera. To eliminate the influence of gravity, these were mounted on a platform which was allowed to fall freely approximately 8 ft. During the free fall, photographs were taken of boiling from various surface configurations such as electrically heated horizontal and vertical ribbons. The heat flux was varied to produce conditions from moderate nucleate boiling to burnout. The results indicate that gravity plays a considerable role in the boiling process, especially in connection with the motion of vapor within the liquid.


Author(s):  
M. R. Reda

Nucleate boiling heat transfer is first introduced and the literature is reviewed. It was concluded that the passive layer and the grain boundaries are responsible for the transfer to the nucleate boiling regime. Based on the recent work of Biener and his collaborators (Nature Material 2008) and the Gibbs rule of thermodynamics, a possible mechanism was outlined. The mechanism assumes that each grain in the passive layer act as a chemical actuator which is driven by microstructure phase change. The new mechanism agrees well with the experimental results, in good agreement with previous models and can explain why and how CHF occurs.


2005 ◽  
Vol 128 (7) ◽  
pp. 726-729 ◽  
Author(s):  
Zhenhua Liu ◽  
Yuhao Qiu

The nucleate boiling heat transfer characteristics of a round water jet impingement in a flat stagnation zone on the superhydrophilic surface were experimentally investigated. The superhydrophilic heat transfer surface was formed by a TiO2 coating process. The experimental results were compared with those on the common metal surface. In particular, the quantificational effects of the flow conditions, heating conditions, and the coating methods on the critical heat flux (CHF) were systemically investigated. The experimental data showed that the nucleate boiling heat transfer characteristics on the superhydrophilic surface are significantly different from those on the common metal surface. The CHF of boiling on the superhydrophilic surface is greatly increased by decreasing of the solid-liquid contact angle.


Author(s):  
Yasuo Koizumi ◽  
Kenta Hayashi

Pool nucleate boiling heat transfer experiments were performed for water at 0.101 MPa to examine the elementary process of the nucleate boiling. Heat transfer surface was made from a copper printed circuit board. Direct current was supplied to heat it up. The Bakelite plate of the backside of a copper layer was taken off at the center portion of the heat transfer surface. The instantaneous variation of the backside temperature of the heat transfer surface was measured with an infrared radiation camera. Bubble behavior was recorded with a high speed video camera. In the isolated bubble region, surface temperature was uniform during waiting time. When boiling bubble generation started, a large dip in the surface temperature was formed under the bubble. After the bubble left from the heat transfer surface, the surface temperature returned to former uniform temperature distribution. Surface temperature was not affected by the bubble generation beyond 1.6 mm from the center of the bubble. In the isolated bubble region, a convection term was approximately 80 % in total heat transfer rate. The importance of the three-phase interface line in the heat transfer should be checked carefully. In the intermediate and high heat flux region, the variation of surface temperature and heat flux were small. Rather those were close to their average values even at critical heat flux condition. It seemed that the large part of the heat transfer surface was covered with water even at the critical heat flux condition. The heat flux at the area that appeared to be the three-phase contact line was not so high and close to the average heat flux.


Sign in / Sign up

Export Citation Format

Share Document