Numerical analysis of aerodynamic performance of rotors with leading edge slats

1995 ◽  
Author(s):  
A Bangalore ◽  
L Sankar
2014 ◽  
Vol 629 ◽  
pp. 30-35 ◽  
Author(s):  
Syed Mohammed Aminuddin Aftab ◽  
Kamarul Arifin Ahmad

In this work, the characteristic design of the humpback whale flippers is incorporated and investigated on NACA 4415 airfoil at very low Mach number. The effect of Tubercle Leading Edge on NACA4415 airfoil has been studied. This novel study attempts to mimic the effect of tubercles on the airfoil wing to improve lift and delay stall. The results showed significant improvement in aerodynamic performance of TLE when compared to CW. TLE, in comparison to wing with vortex generators, performed better. An improvement in lift by about 13.6% was obtained contrary to only 6.3% increase in case of VG under same Reynolds number. In addition, it was also observed that incorporation of tubercles further delayed stall and continued to produce lift at high angle of attacks.


Author(s):  
Tania Marie Arispe Angulo ◽  
Waldir de Oliveira ◽  
Ramiro Gustavo Ramirez Camacho ◽  
Edna da Silva ◽  
GERMÁN ENRIQUE NIÑO DEL RÍO

1993 ◽  
Vol 30 (6) ◽  
pp. 807-812 ◽  
Author(s):  
Walter O. Valarezo ◽  
Frank T. Lynch ◽  
Robert J. McGhee

2020 ◽  
Vol 12 ◽  
pp. 175682932097798
Author(s):  
Han Bao ◽  
Wenqing Yang ◽  
Dongfu Ma ◽  
Wenping Song ◽  
Bifeng Song

Bionic micro aerial vehicles have become popular because of their high thrust efficiency and deceptive appearances. Leading edge or trailing edge devices (such as slots or flaps) are often used to improve the flight performance. Birds in nature also have leading-edge devices, known as the alula that can improve their flight performance at large angles of attack. In the present study, the aerodynamic performance of a flapping airfoil with alula is numerically simulated to illustrate the effects of different alula geometric parameters. Different alula relative angles of attack β (the angle between the chord line of the alula and that of the main airfoil) and vertical distances h between the alula and the main airfoil are simulated at pre-stall and post-stall conditions. Results show that at pre-stall condition, the lift increases with the relative angle of attack and the vertical distance, but the aerodynamic performance is degraded in the presence of alula compared with no alula, whereas at post-stall condition, the alula greatly enhances the lift. However, there seems to be an optimal relative angle of attack for the maximum lift enhancement at a fixed vertical distance considering the unsteady effect, which may indicate birds can adjust the alula twisting at different spanwise positions to achieve the best flight performance. Different alula geometric parameters may affect the aerodynamic force by modifying the pressure distribution along the airfoil. The results are instructive for design of flapping-wing bionic unmanned air vehicles.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Yan Wang ◽  
Ruifeng Hu ◽  
Xiaojing Zheng

Leading edge erosion is a considerable threat to wind turbine performance and blade maintenance, and it is very imperative to accurately predict the influence of various degrees of erosion on wind turbine performance. In the present study, an attempt to investigate the effects of leading edge erosion on the aerodynamics of wind turbine airfoil is undertaken by using computational fluid dynamics (CFD) method. A new pitting erosion model is proposed and semicircle cavities were used to represent the erosion pits in the simulation. Two-dimensional incompressible Reynolds-averaged Navier–Stokes equation and shear stress transport (SST) k–ω turbulence model are adopted to compute the aerodynamics of a S809 airfoil with leading edge pitting erosions, where the influences of pits depth, densities, distribution area, and locations are considered. The results indicate that pitting erosion has remarkably undesirable influences on the aerodynamic performance of the airfoil, and the critical pits depth, density, and distribution area degrade the airfoil aerodynamic performance mostly were obtained. In addition, the dominant parameters are determined by the correlation coefficient path analysis method, results showed that all parameters have non-negligible effects on the aerodynamics of S809 airfoil, and the Reynolds number is of the most important, followed by pits density, pits depth, and pits distribution area. Meanwhile, the direct and indirect effects of these factors are analyzed, and it is found that the indirect effects are very small and the parameters can be considered to be independent with each other.


Sign in / Sign up

Export Citation Format

Share Document