An experimental investigation of a non-steady flow thrust augmenter

1995 ◽  
Author(s):  
Sameh Amin ◽  
Charles Garris, s A, Jr
1965 ◽  
Vol 180 (1) ◽  
pp. 641-672 ◽  
Author(s):  
R. S. Benson ◽  
A. Whitfield

The results are given of an experimental investigation of the flow characteristics of a centrifugal compressor under non-steady flow conditions. The compressor delivered air against a rotary valve with a tee branch located in the pipe system between the compressor and the rotary valve. By varying the areas of a nozzle located at the branch end and orifices in the rotary valve a range of flow conditions could be explored. The tests showed that the surge point was displaced to a point of greater mass flow (thus reducing the flow range of the compressor); the magnitude of the displacement depended on the frequency and amplitude of the pressure pulses. Except for small fluctuations in pressure the overall compressor efficiency was reduced for all the test conditions. The flow characteristic of the compressor, as represented by the pressure-mass flow curves, were displaced under all conditions of pulsating flow, the greatest deviation from steady flow characteristics occurring with largest fluctuations in rotary valve area and at low frequencies.


Author(s):  
Toshiaki Setoguchi ◽  
Manabu Takao ◽  
Kenji Kaneko ◽  
Shuichi Nagata ◽  
Kazutaka Toyota

The objective of this paper is to present the effect of end plate on the performances of the impulse turbine for wave energy conversion by experimental investigation. The experiments have been performed by model testing under steady flow conditions in the study. And then, the performances of the impulse turbine with end plates have been compared with those of the original impulse turbine, i.e., the impulse turbine without end plate. As a result, it is found that the characteristics of the impulse turbine with end plates are superior to those of the original impulse turbine. Furthermore, the effects of end plate size and penetration on the turbine characteristics have been clarified in the study.


2002 ◽  
Vol 124 (3) ◽  
pp. 737-746 ◽  
Author(s):  
E. Konstantinidis ◽  
S. Balabani ◽  
M. Yianneskis

This paper describes an experimental investigation of the vortex shedding phenomena in a staggered tube array with streamwise and transverse spacing to diameter ratios of 2.1 and 3.6, respectively. LDA measurements were employed to monitor the flow fluctuations and a visualization technique was implemented to reveal the underlying flow patterns in the array for steady and pulsating cross-flow. The results obtained in steady flow are in general agreement with results from previous investigations and show that vortex shedding occurs at two distinct frequencies in the front and inner rows. A lower frequency component was detected at the exit of the array, which has not been previously identified. Pulsating flow caused the frequency of vortex shedding to lock-on at the subharmonic of the imposed frequency. In the lock-on range, vortex shedding from all the tubes was synchronized and in-phase and velocity fluctuations at the shedding frequency increased considerably compared to their counterparts in steady flow.


1995 ◽  
Vol 23 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Charles L. Asbury ◽  
Jeffrey W. Ruberti ◽  
Edward I. Bluth ◽  
Robert A. Peattie

1999 ◽  
Vol 1 ◽  
pp. S86-S86
Author(s):  
R DESIMONE ◽  
G GLOMBITZA ◽  
C VAHL ◽  
H MEINZER ◽  
S HAGL

Sign in / Sign up

Export Citation Format

Share Document