scour hole
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 90)

H-INDEX

20
(FIVE YEARS 6)

2021 ◽  
Vol 14 (1) ◽  
pp. 392
Author(s):  
Md. Amir Khan ◽  
Nayan Sharma ◽  
Jaan Pu ◽  
Faisal M. Alfaisal ◽  
Shamshad Alam ◽  
...  

Researchers have recognized that the successive growth of mid-channel bar deposits can be entertained as the raison d’être for the initiation of the braiding process, which is closely interlinked with the growth, decay, and vertical distribution of fluvial turbulent kinetic energy (TKE). Thus, focused analysis on the underlying mechanics of turbulent flow structures in the proximity of a bar deposit occurring in the middle of the channel can afford crucial scientific clues for insight into the initiating fluvial processes that give rise to braiding. In the study reported herein, a physical model of a mid-channel bar is constructed in an experimental flume to analyze the turbulence parameters in a region close to the bar. Notably, the flow velocity plays an important role in understanding the flow behavior in the scour-hole location in the upstream flow divergence zone as well as near the downstream zone of flow convergence in a mid-channel bar. Therefore, the fluctuating components of turbulent flow velocity are herein discussed and analyzed for the regions located close to the bar. In the present study, the impact of the mid-channel bar, as well as its growth in turbulent flow, on higher-order velocity fluctuation moments are investigated. For near-bed locations, the results show the dominance of ejection events in upstream zones and the dominance of sweep events at locations downstream of the mid-channel bar. In scour-hole sections, the negative value of the stream-wise flux of turbulent kinetic energy and the positive value of the vertical flux of turbulent kinetic energy indicate energy transport in downward and forward directions, respectively. The downward and forward energy transport processes lead to scouring at these locations. The maximum turbulent production rate occurs in the wake region of the bar. The high rate of turbulence production has occurred in that region, which can be ascribed to the process of shedding turbulent vortices. The results show that the impact of the presence of the bar is mainly restricted to the lower layers of flow. The turbulent dissipation rate monotonically decreases with an increase in the vertical distance from the bed. The turbulent production rate first increases and then decreases with successive increases in the vertical distance from the bed. The paper concludes with suggestions for the future potential use of the present research for the practical purpose of examining braid bar occurrences in alluvial rivers to develop an appropriate response through training measures.


2021 ◽  
Vol 9 (12) ◽  
pp. 1373
Author(s):  
Ruigeng Hu ◽  
Xiuhai Wang ◽  
Hongjun Liu ◽  
Yao Lu

A series of laboratory experiments were conducted in a wave-current flume to investigate the scour evolution and scour morphology around tripod in combined waves and current. The tripod model was made using the 3D printing technology, and it was installed in seabed with three installation angles α = 0°, 90°and 180° respectively. In the present study, the scour evolution and scour characteristic were first analyzed. Then, the equilibrium scour depth Seq was investigated. Furthermore, a parametric study was carried out to study the effects of Froude number Fr and Euler number Eu on equilibrium scour depth Seq respectively. Finally, the effects of tripod’s structural elements on Seq were discussed. The results indicate that the maximum scour hole appeared underneath the main column for installation angle α = 0°, 90° and 180°. The Seq for α = 90° was greater than the case of α = 0° and α = 180°, implying the tripod suffered from more severe scour for α = 90°. When KC was fixed, the dimensionless time scale T* for α = 90° was slightly larger than the case of α = 0° and α = 180° and the T* was linearly correlated with Ucw in the range of 0.347 < Ucw < 0.739. The higher Fr and Eu both resulted in the greater scour depth for tripod in combined waves and current. The logarithmic formula can depict the general trend of Seq and Fr (Eu) for tripod in combined waves and current.


Author(s):  
Mohamed S. Abdelmoaty ◽  
Mahmoud Zayed

Abstract Background Local scour is one of the main problems affecting the stability and operation of control hydraulic structures. Many techniques were used to control the resulting scour. In the recent study, a new technique was used to control local scour downstream single-gate hydraulic regulator by using side flow jets. This study aimed to demonstrate the effect of side jets at different angles on the local scour parameters (depth, length, and volume) and energy dissipation in the downstream hydraulic regulator. Results A physical model was used to represent the open channel, regulator, and the side jets with different angles. Five flow discharges, four jet angles, and three gate openings were applied through the experiment. The experiment results showed that the presence of side jets had a remarkable effect on the parameters of the local scour hole and energy dissipation. They dissipated more energy of hydraulic jump than in the absence of jets, and consequently, scour hole dimensions were significantly reduced. Regression analysis was used to deduce equations that can predict the development of local scour downstream sluice gate considering the inclination angle of side flow jets under different flow conditions. Conclusions Side flow jets can be used as scour reducer techniques with the advantages of eliminating the jet clog produced from sediments and suspended solids.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3289
Author(s):  
Badal Mahalder ◽  
John S. Schwartz ◽  
Angelica M. Palomino ◽  
Jon Zirkle

Scour evolution and propagation around a cylinder in natural cohesive sediment was uniquely investigated under multi-flow event varying sequentially by velocity magnitudes. This flume study differs from others that only used test sediment with commercially available clays for single flow. The objective of this study was to explore the potential differences in scour hole development in natural riverbed sediments subjected to varying flow velocity scenarios, advancing our understanding from existing studies on scour. The study consisted of 18 experimental runs based on: velocity, flow duration, and soil bulk density. Scour hole development progressed initially along the cylinder sides, and maximum depths also occurred at these lateral locations. Scour hole depths were less for higher soil bulk densities (≥1.81 g/cm3) compared with lower densities, and erosion rates were slower. It was observed with all flow sequences that scour depths were similar at the end of each experimental run. However, scour initiation was observed to be time dependent for soils with higher bulk density (1.81–2.04 g/cm3) regardless of flow velocity sequences. The observed time dependency suggests a process feedback with the scour hole development initiated at the cylinder sides, which influence local 3D hydraulics as the scour hole depth progresses.


2021 ◽  
Vol 28 (3) ◽  
pp. 159-169
Author(s):  
Saleh Issa Khassaf ◽  
Budoor Mohammed Rashak

Submerged Groynes are low profile linear structures that are generally located on the outside bank to form Groynes fields and prevent the erosion of stream banks by redirecting high-velocity flow away from the bank. This research was studied in detail through two major stages. The first stage of the study is based on laboratory experiments to measure the development of local scour around L-shape submerged Groyne with the time, and special attention is given to the effects of different hydraulic and geometric parameters on local scour. Also; maps were drawn showing contour lines that represented the bed levels for maximum scour depth after reaching the equilibrium case. The result showed that a decrease in the scour depth ratio due to the increasing submerged ratio, and the number of Groynes. While the scour hole geometry will increase with the Froude number, flow intensity, and the spacing between Groynes, the decreasing percentage in the scour hole was measured to be about (4.3) % and (4.4) % for decreasing the spacing between Groynes from (2Lg) to (1.5Lg). Besides, it was range about (11.1) % and (14.0) % when reducing the spacing from (1.5Lg) to (Lg) under the same value of maximum Froude number. The second stage of the study is based on experimental results. A new formula was developed by using statistical analysis and it was found that a good determination coefficient.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3108
Author(s):  
Seyedeh Fatemeh Nabaei ◽  
Hossein Afzalimehr ◽  
Jueyi Sui ◽  
Bimlesh Kumar ◽  
Seyed Hamidreza Nabaei

In the present experimental study, the effect of vegetation on flow structure and scour profile around a bridge abutment has been investigated. The vegetation in the channel bed significantly impacted the turbulent statistics and turbulence anisotropy. Interestingly, compared to the channel without vegetation, the presence of vegetation in the channel bed dramatically reduced the primary vortex, but less impacts the wake vortex. Moreover, the tangential and radial velocities decreased with the vegetation in the channel bed, while the vertical velocity (azimuthal angle > 90°) had large positive values near the scour hole bed. Results showed that the presence of the vegetation in the channel bed caused a noticeable decrease in the Reynolds shear stress. Analysis of the Reynolds stress anisotropy indicated that the flow had more tendency to be isotropic for the vegetated bed. Results have shown that the anisotropy profile changes from pancake-shaped to cigar-shaped in the un-vegetated channel. In contrast, it had the opposite reaction for the vegetated bed.


2021 ◽  
Vol 240 ◽  
pp. 109927
Author(s):  
Mantu Majumder ◽  
Debarghya Chakraborty
Keyword(s):  

2021 ◽  
Vol 906 (1) ◽  
pp. 012117
Author(s):  
Martin Hladík ◽  
Martin Králík ◽  
Jan Ouhel ◽  
Vojtěch Sýs ◽  
Milan Zukal

Abstract An energy dissipation on hydraulic structures is a scientifically highly examined field of study. Gained knowledge can be used to ensure the safety of the hydraulic structures and the channels which is crucial during floods. Above that, those structures are also part of the critical infrastructure therefore their function is necessary. It is assumed that in the Czech Republic the precipitation distribution is changing due to climate change thus episodes of extreme floods may be observed more often. The paper brings brand new knowledge on the kinetic energy dissipation on the chute and in the stilling basin and its impact on the riverbed scour hole development. The presented research was conducted in the Water Management Experimental Centre of Czech Technical University in Prague, Faculty of Civil Engineering. The research aimed to examine the energy dissipation mechanism on different geometric modifications of the construction of spillway chute and stilling basin and its impact on the process of scour hole development. These various types of dams’ flood safety equipment were examined in the hydraulic laboratory: an elementary form of the spillway without any stilling basin; the elementary form of the spillway and the stilling basin (crest and spillway channel had the same width); the chute width was reduced, and the stilling basin had the full width; steps were added on the narrowed chute and the and stilling basin had the full width; only the spillway crest was reduced to a half-width; only the stilling basin width was smoothly reduced; the chute’s width was smoothly reduced along the chute and the stilling basin had full width; the chute’s width was smoothly reduced along the chute and the stilling basin had the width reduced to a half. The flow, water levels, scour hole and deposit dimensions were measured. Then the amount of energy dissipated was computed. The correlation and connection between energy dissipation and scour hole development was investigated. These outcomes can be used as a recommendation of an appropriate construction design to provide better flood safety of the hydraulic structure.


Sign in / Sign up

Export Citation Format

Share Document