Guidance of aeroassisted vehicles by static and dynamic feedback

1995 ◽  
Author(s):  
Charalmbos Charalambous ◽  
Raed Jaber ◽  
D Naidu
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chen Wang ◽  
Michael P. O’Hagan ◽  
Ehud Neumann ◽  
Rachel Nechushtai ◽  
Itamar Willner

AbstractNucleic acid-based constitutional dynamic networks (CDNs) have recently emerged as versatile tools to control a variety of catalytic processes. A key challenge in the application of these systems is achieving intercommunication between different CDNs to mimic the complex interlinked networks found in cellular biology. In particular, the possibility to interface photochemical ‘energy-harvesting’ processes with dark-operating ‘metabolic’ processes, in a similar way to plants, represents an up to now unexplored yet enticing research direction. The present study introduces two CDNs that allow the intercommunication of photocatalytic and dark-operating catalytic functions mediated by environmental components that facilitate the dynamic coupling of the networks. The dynamic feedback-driven intercommunication of the networks is accomplished via information transfer between the two CDNs effected by hairpin fuel strands in the environment of the system, leading to the coupling of the photochemical and dark-operating modules.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Ting-Ting Gang ◽  
Jun Yang ◽  
Qing Gao ◽  
Yu Zhao ◽  
Jianbin Qiu

This paper investigates the stabilization problem for a class of discrete-time stochastic non-affine nonlinear systems based on T-S fuzzy models. Based on the function approximation capability of a class of stochastic T-S fuzzy models, it is shown that the stabilization problem of a stochastic non-affine nonlinear system can be solved as a robust stabilization problem of the stochastic T-S fuzzy system with the approximation errors as the uncertainty term. By using a class of piecewise dynamic feedback fuzzy controllers and piecewise quadratic Lyapunov functions, robust semiglobal stabilization condition of the stochastic non-affine nonlinear systems is formulated in terms of linear matrix inequalities. A simulation example illustrating the effectiveness of the proposed approach is provided in the end.


Sign in / Sign up

Export Citation Format

Share Document