scholarly journals An efficient and robust method for predicting helicopter rotor high-speed impulsive noise

Author(s):  
Kenneth Brentner
Author(s):  
Liangquan Wang ◽  
Guohua Xu ◽  
Yongjie Shi

Prediction of helicopter rotor impulsive noise is practically a very challenging task. This paper describes a hybrid method to predict rotor impulsive noise for both high-speed impulsive noise and blade–vortex interaction noise. The hybrid solver has been developed by combining the advantages of three different methods: (1) a computational fluid dynamics method based on Reynolds-averaged Navier–Stokes equations to account for the viscous and compressible effects near the blade; (2) a vorticity transport model to predict rotor wake system without artificial dissipation; and (3) an acoustic calculation method, based on Ffowcs-Williams Hawkings equation implemented to a permeable data surface. The developed hybrid solver is validated through available test data, for the cases of UH-1H model rotor, AH-1 Operational Loads Survey rotor, and Helishape 7A rotor. Peak sound pressure level of high-speed impulsive noise is accurately predicted with relative errors less than 7%. Additionally, acoustic waveform of blade–vortex interaction noise is well captured though it is sensitive to small changes in aerodynamic load. It is suggested that present hybrid method is versatile for the prediction of rotor impulsive noise with moderate computational cost.


2017 ◽  
Vol 62 (2) ◽  
pp. 1-10
Author(s):  
Seongkyu Lee ◽  
KennethS. Brentner ◽  
PhilipJ. Morris

Author(s):  
Zhongjie Huang ◽  
Leonidas Siozos-Rousoulis ◽  
Tim De Troyer ◽  
Ghader Ghorbaniasl

This paper presents a time-domain method for noise prediction of supersonic rotating sources in a moving medium. The proposed approach can be interpreted as an extensive time-domain solution for the convected permeable Ffowcs Williams and Hawkings equation, which is capable of avoiding the Doppler singularity. The solution requires special treatment for construction of the emission surface. The derived formula can explicitly and efficiently account for subsonic uniform constant flow effects on radiated noise. Implementation of the methodology is realized through the Isom thickness noise case and high-speed impulsive noise prediction from helicopter rotors.


Sign in / Sign up

Export Citation Format

Share Document