Visualization of pulsed vortex generator jets for active control of boundary layer separation

Author(s):  
H. Johari ◽  
K. McManus ◽  
H. Johari ◽  
K. McManus
Author(s):  
Aria Alimi ◽  
Olaf Wünsch

Active flow control of canonical laminar separation bubbles by steady and harmonic vortex generator jets (VGJs) was investigated using direct numerical simulations. Both control strategies were found to be effective in controlling the laminar boundary-layer separation. However, the present results indicate that using the same blowing amplitude, harmonic VGJs were more effective and efficient in reducing the separated region than the steady VGJs considering the fact that the harmonic VGJs use less momentum than the steady case. For steady VGJs, longitudinal structures formed immediately downstream of injection location led to formation of hairpin-type vortices causing an earlier transition to turbulence. Symmetric hairpin vortices were shown to develop downstream of the forcing location for the harmonic VGJs as well. However, the increased control effectiveness for harmonic VGJs flow control strategy is attributed to the fact that shear-layer instability mechanism was exploited. As a result, disturbances introduced by VGJs were strongly amplified leading to development of large-scale coherent structures, which are very effective in increasing the momentum exchange, thus, limiting the separated region.


Author(s):  
Aria Alimi ◽  
Olaf Wünsch

Active flow control of canonical laminar separation bubbles by steady and harmonic vortex generator jets (VGJs) was investigated using direct numerical simulations. Both control strategies were found to be effective in controlling the laminar boundary-layer separation. However, the present results indicate that using the same blowing amplitude, harmonic VGJs were more effective and efficient in reducing the separated region than the steady VGJs considering the fact that the harmonic VGJs use less momentum than the steady case. For steady VGJs, longitudinal structures formed immediately downstream of injection location led to formation of hairpin-type vortices causing an earlier transition to turbulence. Symmetric hairpin vortices were shown to develop downstream of the forcing location for the harmonic VGJs as well. However, the increased control effectiveness for harmonic VGJs flow control strategy is attributed to the fact that shear-layer instability mechanism was exploited. As a result, disturbances introduced by VGJs were strongly amplified leading to development of large-scale coherent structures, which are very effective in increasing the momentum exchange, thus, limiting the separated region.


Author(s):  
Jeffrey P. Bons ◽  
Rolf Sondergaard ◽  
Richard B. Rivir

The effects of pulsed vortex generator jets on a naturally separating low pressure turbine boundary layer have been investigated experimentally. Blade Reynolds numbers in the linear turbine cascade match those for high altitude aircraft engines and industrial turbine engines with elevated turbine inlet temperatures. The vortex generator jets (30 degree pitch and 90 degree skew angle) are pulsed over a wide range of frequency at constant amplitude and selected duty cycles. The resulting wake loss coefficient vs. pulsing frequency data add to previously presented work by the authors documenting the loss dependency on amplitude and duty cycle. As in the previous studies, vortex generator jets are shown to be highly effective in controlling laminar boundary layer separation. This is found to be true at dimensionless forcing frequencies (F+) well below unity and with low (10%) duty cycles. This unexpected low frequency effectiveness is due to the relatively long relaxation time of the boundary layer as it resumes its separated state. Extensive phase-locked velocity measurements taken in the blade wake at an F+ of 0.01 with 50% duty cycle (a condition at which the flow is essentially quasi-steady) document the ejection of bound vorticity associated with a low momentum fluid packet at the beginning of each jet pulse. Once this initial fluid event has swept down the suction surface of the blade, a reduced wake signature indicates the presence of an attached boundary layer until just after the jet termination. The boundary layer subsequently relaxes back to its naturally separated state. This relaxation occurs on a timescale which is 5–6 times longer than the original attachment due to the starting vortex. Phase-locked boundary layer measurements taken at various stations along the blade chord illustrate this slow relaxation phenomenon. This behavior suggests that some economy of jet flow may be possible by optimizing the pulse duty cycle and frequency for a particular application. At higher pulsing frequencies, for which the flow is fully dynamic, the boundary layer is dominated by periodic shedding and separation bubble migration, never recovering its fully separated (uncontrolled) state.


Shock Waves ◽  
2014 ◽  
Vol 25 (5) ◽  
pp. 521-533 ◽  
Author(s):  
D. Estruch-Samper ◽  
L. Vanstone ◽  
R. Hillier ◽  
B. Ganapathisubramani

2001 ◽  
Vol 124 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Jeffrey P. Bons ◽  
Rolf Sondergaard ◽  
Richard B. Rivir

The effects of pulsed vortex generator jets on a naturally separating low-pressure turbine boundary layer have been investigated experimentally. Blade Reynolds numbers in the linear turbine cascade match those for high-altitude aircraft engines and industrial turbine engines with elevated turbine inlet temperatures. The vortex generator jets (30 deg pitch and 90 deg skew angle) are pulsed over a wide range of frequency at constant amplitude and selected duty cycles. The resulting wake loss coefficient versus pulsing frequency data add to previously presented work by the authors documenting the loss dependency on amplitude and duty cycle. As in the previous studies, vortex generator jets are shown to be highly effective in controlling laminar boundary layer separation. This is found to be true at dimensionless forcing frequencies F+ well below unity and with low (10 percent) duty cycles. This unexpected low-frequency effectiveness is due to the relatively long relaxation time of the boundary layer as it resumes its separated state. Extensive phase-locked velocity measurements taken in the blade wake at an F+ of 0.01 with 50 percent duty cycle (a condition at which the flow is essentially quasi-steady) document the ejection of bound vorticity associated with a low-momentum fluid packet at the beginning of each jet pulse. Once this initial fluid event has swept down the suction surface of the blade, a reduced wake signature indicates the presence of an attached boundary layer until just after the jet termination. The boundary layer subsequently relaxes back to its naturally separated state. This relaxation occurs on a timescale which is five to six times longer than the original attachment due to the starting vortex. Phase-locked boundary layer measurements taken at various stations along the blade chord illustrate this slow relaxation phenomenon. This behavior suggests that some economy of jet flow may be possible by optimizing the pulse duty cycle and frequency for a particular application. At higher pulsing frequencies, for which the flow is fully dynamic, the boundary layer is dominated by periodic shedding and separation bubble migration, never recovering its fully separated (uncontrolled) state.


1996 ◽  
Author(s):  
Gregory Hernandez ◽  
Thilo Schoenfeld ◽  
Franck Nicoud ◽  
Norberto Mangiavacchi

2006 ◽  
Vol 129 (2) ◽  
pp. 226-235 ◽  
Author(s):  
K. P. Angele ◽  
F. Grewe

The present study investigates turbulent boundary layer separation control by means of streamwise vortices with focus on the instantaneous vortex behavior. A turbulent boundary layer is exposed to a pressure gradient that generates a separation bubble with substantial backflow. The separation bubble is controlled by conventional passive vortex generators creating pairs of counterrotating vortices. Quantitative information is achieved by applying Particle Image Velocimetry (PIV) to the cross-stream plane of the vortices. The characteristics of a pair of counter-rotating vortices shed from a vortex generator is investigated in the near-field downstream of the vortex generator. The vortices were found to grow with the boundary layer in the downstream direction, and the maximum vorticity decreases as the circulation is conserved. The vortices are nonstationary, and the movements in the spanwise direction are larger than those in the wall-normal direction, due to the presence of the wall. The vortices fluctuate substantially and move over a spanwise distance, which is approximately equal to their size. The most probable instantaneous separation between the two vortices shed from one vortex generator equals the difference between their mean positions. The unsteadiness of the vortices contributes to the observed maxima in the Reynolds stresses around the mean vortex centers. The instantaneous vortex size and the instantaneous maximum vorticity are also fluctuating properties, and the instantaneous vortex is generally smaller and stronger than the mean vortex. A correlation was found between a large instantaneous vortex size and a low instantaneous maximum vorticity (and vice versa), suggesting that the vortices are subjected to vortex stretching.


Sign in / Sign up

Export Citation Format

Share Document