The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets

Author(s):  
Jeffrey P. Bons ◽  
Rolf Sondergaard ◽  
Richard B. Rivir

The effects of pulsed vortex generator jets on a naturally separating low pressure turbine boundary layer have been investigated experimentally. Blade Reynolds numbers in the linear turbine cascade match those for high altitude aircraft engines and industrial turbine engines with elevated turbine inlet temperatures. The vortex generator jets (30 degree pitch and 90 degree skew angle) are pulsed over a wide range of frequency at constant amplitude and selected duty cycles. The resulting wake loss coefficient vs. pulsing frequency data add to previously presented work by the authors documenting the loss dependency on amplitude and duty cycle. As in the previous studies, vortex generator jets are shown to be highly effective in controlling laminar boundary layer separation. This is found to be true at dimensionless forcing frequencies (F+) well below unity and with low (10%) duty cycles. This unexpected low frequency effectiveness is due to the relatively long relaxation time of the boundary layer as it resumes its separated state. Extensive phase-locked velocity measurements taken in the blade wake at an F+ of 0.01 with 50% duty cycle (a condition at which the flow is essentially quasi-steady) document the ejection of bound vorticity associated with a low momentum fluid packet at the beginning of each jet pulse. Once this initial fluid event has swept down the suction surface of the blade, a reduced wake signature indicates the presence of an attached boundary layer until just after the jet termination. The boundary layer subsequently relaxes back to its naturally separated state. This relaxation occurs on a timescale which is 5–6 times longer than the original attachment due to the starting vortex. Phase-locked boundary layer measurements taken at various stations along the blade chord illustrate this slow relaxation phenomenon. This behavior suggests that some economy of jet flow may be possible by optimizing the pulse duty cycle and frequency for a particular application. At higher pulsing frequencies, for which the flow is fully dynamic, the boundary layer is dominated by periodic shedding and separation bubble migration, never recovering its fully separated (uncontrolled) state.

2001 ◽  
Vol 124 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Jeffrey P. Bons ◽  
Rolf Sondergaard ◽  
Richard B. Rivir

The effects of pulsed vortex generator jets on a naturally separating low-pressure turbine boundary layer have been investigated experimentally. Blade Reynolds numbers in the linear turbine cascade match those for high-altitude aircraft engines and industrial turbine engines with elevated turbine inlet temperatures. The vortex generator jets (30 deg pitch and 90 deg skew angle) are pulsed over a wide range of frequency at constant amplitude and selected duty cycles. The resulting wake loss coefficient versus pulsing frequency data add to previously presented work by the authors documenting the loss dependency on amplitude and duty cycle. As in the previous studies, vortex generator jets are shown to be highly effective in controlling laminar boundary layer separation. This is found to be true at dimensionless forcing frequencies F+ well below unity and with low (10 percent) duty cycles. This unexpected low-frequency effectiveness is due to the relatively long relaxation time of the boundary layer as it resumes its separated state. Extensive phase-locked velocity measurements taken in the blade wake at an F+ of 0.01 with 50 percent duty cycle (a condition at which the flow is essentially quasi-steady) document the ejection of bound vorticity associated with a low-momentum fluid packet at the beginning of each jet pulse. Once this initial fluid event has swept down the suction surface of the blade, a reduced wake signature indicates the presence of an attached boundary layer until just after the jet termination. The boundary layer subsequently relaxes back to its naturally separated state. This relaxation occurs on a timescale which is five to six times longer than the original attachment due to the starting vortex. Phase-locked boundary layer measurements taken at various stations along the blade chord illustrate this slow relaxation phenomenon. This behavior suggests that some economy of jet flow may be possible by optimizing the pulse duty cycle and frequency for a particular application. At higher pulsing frequencies, for which the flow is fully dynamic, the boundary layer is dominated by periodic shedding and separation bubble migration, never recovering its fully separated (uncontrolled) state.


Author(s):  
Rolf Sondergaard ◽  
Jeffrey P. Bons ◽  
Matthew Sucher ◽  
Richard B. Rivir

An experimental investigation has been conducted into the feasibility of increasing blade spacing (pitch) at constant chord in a linear turbine cascade. Vortex generator jets (VGJs) located on the suction surface of each blade in the cascade are employed to maintain attached boundary layers despite the increasing tendency to separate due to the increased uncovered turning. Tests were performed at low Mach numbers and at blade Reynolds numbers between 25,000 and 75,000 (based on axial chord and inlet velocity). The vortex generator jets (30 degree injection angle and 90 degree skew angle) were operated with steady flow with momentum blowing ratios between zero and five, and from two spanwise rows of holes located at 45% and 63% axial chord. In the absence of control, pitch-averaged wake losses increase up to 600% as the blade pitch is increased from its design value to twice the design value. With the application of VGJs, these losses were driven down to or below the losses at the design pitch. The effectiveness of VGJs was found to increase modestly with increasing Reynolds number up to the highest value tested, Re = 75,000. The fluid phenomenon responsible for this remarkable range of effectiveness is clearly more than a simple boundary layer transition effect, as boundary layer trips installed on the same blades without VGJ blowing had no beneficial effect on blade losses. Also, tests conducted at elevated levels of freestream turbulence (4% at the cascade inlet) where the suction surface boundary layer is generally turbulent, showed wake loss reduction comparable to tests conducted at the nominal 1% freestream turbulence. For all configurations, blowing from the upstream row had the greatest wake influence. These findings open the possibility that future LPT designs could take advantage of active separation control using integrated VGJs to reduce the turbine part count and stage weight without significant increase in pressure losses.


Author(s):  
Ralph J. Volino

Oscillating vortex generator jets have been used to control boundary layer separation from the suction side of a low-pressure turbine airfoil. A low Reynolds number (Re = 25,000) case with low free-stream turbulence has been investigated with detailed measurements including profiles of mean and fluctuating velocity and turbulent shear stress. Ensemble averaged profiles are computed for times within the jet pulsing cycle, and integral parameters and local skin friction coefficients are computed from these profiles. The jets are injected into the mainflow at a compound angle through a spanwise row of holes in the suction surface. Preliminary tests showed that the jets were effective over a wide range of frequencies and amplitudes. Detailed tests were conducted with a maximum blowing ratio of 4.7 and a dimensionless oscillation frequency of 0.65. The outward pulse from the jets in each oscillation cycle causes a disturbance to move down the airfoil surface. The leading and trailing edge celerities for the disturbance match those expected for a turbulent spot. The disturbance is followed by a calmed region. Following the calmed region, the boundary layer does separate, but the separation bubble remains very thin. Results are compared to an uncontrolled baseline case in which the boundary layer separated and did not reattach, and a case controlled passively with a rectangular bar on the suction surface. The comparison indicates that losses will be substantially lower with the jets than in the baseline or passively controlled cases.


2003 ◽  
Vol 125 (4) ◽  
pp. 765-777 ◽  
Author(s):  
Ralph J. Volino

Oscillating vortex generator jets have been used to control boundary layer separation from the suction side of a low-pressure turbine airfoil. A low Reynolds number (Re=25,000) case with low free-stream turbulence has been investigated with detailed measurements including profiles of mean and fluctuating velocity and turbulent shear stress. Ensemble averaged profiles are computed for times within the jet pulsing cycle, and integral parameters and local skin friction coefficients are computed from these profiles. The jets are injected into the mainflow at a compound angle through a spanwise row of holes in the suction surface. Preliminary tests showed that the jets were effective over a wide range of frequencies and amplitudes. Detailed tests were conducted with a maximum blowing ratio of 4.7 and a dimensionless oscillation frequency of 0.65. The outward pulse from the jets in each oscillation cycle causes a disturbance to move down the airfoil surface. The leading and trailing edge celerities for the disturbance match those expected for a turbulent spot. The disturbance is followed by a calmed region. Following the calmed region, the boundary layer does separate, but the separation bubble remains very thin. Results are compared to an uncontrolled baseline case in which the boundary layer separated and did not reattach, and a case controlled passively with a rectangular bar on the suction surface. The comparison indicates that losses will be substantially lower with the jets than in the baseline or passively controlled cases.


Author(s):  
Jeffrey P. Bons ◽  
Rolf Sondergaard ◽  
Richard B. Rivir

The application of pulsed vortex generator jets to control separation on the suction surface of a low pressure turbine blade is reported. Blade Reynolds numbers in the experimental, linear turbine cascade match those for high altitude aircraft engines and aft stages of industrial turbine engines with elevated turbine inlet temperatures. The vortex generator jets have a 30 degree pitch and a 90 degree skew to the freestream direction. Jet flow oscillations up to 100 Hz are produced using a high frequency solenoid feed valve. Results are compared to steady blowing at jet blowing ratios less than 4 and at two chordwise positions upstream of the nominal separation zone. Results show that pulsed vortex generator jets produce a bulk flow effect comparable to that of steady jets with an order of magnitude less massflow. Boundary layer traverses and blade static pressure distributions show that separation is almost completely eliminated with the application of unsteady blowing. Reductions of over 50% in the wake loss profile of the controlled blade were measured. Experimental evidence suggests that the mechanism for unsteady control lies in the starting and ending transitions of the pulsing cycle rather than the injected jet stream itself. Boundary layer spectra support this conclusion and highlight significant differences between the steady and unsteady control techniques. The pulsed vortex generator jets are effective at both chordwise injection locations tested (45% and 63% axial chord) covering a substantial portion of the blade suction surface. This insensitivity to injection location bodes well for practical application of pulsed VGJ control where the separation location may not be accurately known a priori.


Author(s):  
Manisankar Chidambaranathan ◽  
Shashi B Verma ◽  
Ethirajan Rathakrishnan

Experiments were carried out to control an incident shock-induced separation associated with 22° shock generator in a Mach 3.5 flow using an array of steady micro-jet actuators. Four micro-jet actuator configurations based on the variation in their pitch angle [Formula: see text], skew angle [Formula: see text] and span-wise spacing were used. Each of these configurations were placed 14 δ upstream of the interaction and operated with injection pressures ( Poj) varying from 140 to 643 kPa. While no major variations in separation characteristics were observed for Poj < 140 kPa, significant modifications were observed beyond [Formula: see text] of 140 kPa and until 208.5 kPa. Amongst all the four control configurations, micro-jet vortex generator 2 ([Formula: see text] showed the best control with a 2 δ downstream shift in separation point location relative to no-control. The shift is also accompanied with a change in maximum zero-crossing frequency towards higher frequency (almost twice), a reduction in the intermittency length and an increase in the correlation value between the boundary layer just upstream of the interaction and the intermittent region. These results indicate that the effectiveness of micro-jet vortex generator 2 is probably due to the improved entrainment levels in the shear layer induced by the micro-vortices which are generated downstream of these devices. The increase of the skew angle [Formula: see text] from 180° to 270° for the same pitch angle of β =  45° (micro-jet vortex generator 3) seems to have no major impact on the separation characteristics. The reduction in the span-wise spacing (micro-jet vortex generator 4) resulted in deterioration of the flow field due to the jet-to-jet interaction with increasing injection pressures.


Author(s):  
Ralph J. Volino

Boundary layer separation, transition and reattachment have been studied on a new, very high lift, low-pressure turbine airfoil. Experiments were done under low freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Velocity profiles were acquired in the suction side boundary layer at several streamwise locations using hot-wire anemometry. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) ranging from 25,000 to 330,000. In all cases the boundary layer separated, but at high Reynolds number the separation bubble remained very thin and quickly reattached after transition to turbulence. In the low Reynolds number cases, the boundary layer separated and did not reattach, even when transition occurred. This behavior contrasts with previous research on other airfoils, in which transition, if it occurred, always induced reattachment, regardless of Reynolds number.


1998 ◽  
Author(s):  
Garth V. Hobson ◽  
Denis J. Hansen ◽  
David G. Schnorenberg ◽  
Darren V. Grove

A detailed experimental investigation of second-generation, controlled-diffusion, compressor stator blades at an off-design inlet-flow angle was performed in a low-speed cascade wind tunnel primarily using laser-Doppler velocimetry (LDV). The object of the study was to characterize the off-design flowfield and to obtain LDV measurements of the suction surface boundary layer separation which occurred near mid chord. The effect of Reynolds number on the flow separation in the regime of 210,000 to 640,000 was investigated. Surface flow visualization showed that at the low Re. no. the mid-chord separation bubble started laminar and reattached turbulent within 20% chord on the suction side of the blade. The extent of the bubble compared very well with the measured blade surface pressure distribution which showed a classical plateau and then diffusion in the turbulent region. LDV measurements of the flow reversal in the bubble were performed. At the intermediate Re. no. the boundary layer was transitional before the bubble which had decreased significantly in size (down to 10% chord). At the highest Re. no. the flow was turbulent from close to the leading edge, and three-dimensional flow reversal as a result of endwall effects appeared at approximately 80% chord which did not reattach.


Author(s):  
Hiroaki Hasegawa ◽  
Kazuo Matsuuchi ◽  
Yasuhiro Komatsuzaki

Jets issuing through small holes in a wall into a freestream have proven effective in the control of boundary layer separation. Longitudinal (streamwise) vortices are produced by the interaction between the jets and the freestream. This technique is known as the vortex generator jet method of separation or stall control because it controls separation in the same general way as the well-known method using solid vortex generators. The vortex generator jet method is active control of flow separation that has the ability to provide a time-varying control action to optimize performance under wide range of flow conditions. In this study, the suppression effect of the jet orifice shape of vortex generator jets on flow separation in the diffuser is investigated for three types of jet orifice (circular, triangle and square orifices). The triangle orifice makes strong the vorticity of longitudinal vortices and effective the pressure recovery in the diffuser in comparison with the other orifice shapes. Furthermore, it is found that the orifice shape of vortex generator jets causes the different tendency of the pressure recovery in the downstream direction.


Sign in / Sign up

Export Citation Format

Share Document