Direct numerical simulations of the turbulent flow over a Stratford ramp

Author(s):  
H. Zhang ◽  
H. Fasel
2009 ◽  
Vol 630 ◽  
pp. 1-4 ◽  
Author(s):  
IVAN MARUSIC

Turbulent flows near walls have been the focus of intense study since their first description by Ludwig Prandtl over 100 years ago. They are critical in determining the drag and lift of an aircraft wing for example. Key challenges are to understand the physical mechanisms causing the transition from smooth, laminar flow to turbulent flow and how the turbulence is then maintained. Recent direct numerical simulations have contributed significantly towards this understanding.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 420 ◽  
Author(s):  
Henri Lam ◽  
Alexandre Delache ◽  
Fabien S Godeferd

We consider the separation of motion related to internal gravity waves and eddy dynamics in stably stratified flows obtained by direct numerical simulations. The waves’ dispersion relation links their angle of propagation to the vertical θ , to their frequency ω , so that two methods are used for characterizing wave-related motion: (a) the concentration of kinetic energy density in the ( θ , ω ) map along the dispersion relation curve; and (b) a direct computation of two-point two-time velocity correlations via a four-dimensional Fourier transform, permitting to extract wave-related space-time coherence. The second method is more computationally demanding than the first. In canonical flows with linear kinematics produced by space-localized harmonic forcing, we observe the pattern of the waves in physical space and the corresponding concentration curve of energy in the ( θ , ω ) plane. We show from a simple laminar flow that the curve characterizing the presence of waves is distorted differently in the presence of a background convective mean velocity, either uniform or varying in space, and also when the forcing source is moving. By generalizing the observation from laminar flow to turbulent flow, this permits categorizing the energy concentration pattern of the waves in complex flows, thus enabling the identification of wave-related motion in a general turbulent flow with stable stratification. The advanced method (b) is finally used to compute the wave-eddy partition in the velocity–buoyancy fields of direct numerical simulations of stably stratified turbulence. In particular, we use this splitting in statistics as varied as horizontal and vertical kinetic energy, as well as two-point velocity and buoyancy spectra.


Author(s):  
G. Tryggvason ◽  
J. Lu ◽  
S. Biswas

Recent DNS studies of bubbly flows in channels are discussed. Simulations of nearly spherical bubbly flows in vertical channels show that the bubbles move towards the wall for upflow and away from the wall for downflow in such a way that the core is in hydrostatic equilibrium. For down flow the wall layer is free of bubbles but for upflow there is an excess of bubbles in the wall layer. The liquid velocity in the core is uniform. For laminar downflow the velocity in the wall layer can be computed analytically but for upflow the velocity is strongly influenced by the presence of the bubbles. Results for turbulent flow show similar behavior and for downflow the velocity is given (almost) by the law of the wall. Several simulations are used to examine the effect of void fraction and bubble size for turbulent downflow.


2018 ◽  
Vol 192 ◽  
pp. 161-175 ◽  
Author(s):  
A. Tamburini ◽  
G. Gagliano ◽  
G. Micale ◽  
A. Brucato ◽  
F. Scargiali ◽  
...  

1994 ◽  
Vol 10 (2-3) ◽  
pp. 345-350 ◽  
Author(s):  
R Verstappen ◽  
J.G Wissink ◽  
W Cazemier ◽  
A.E.P Veldman

Sign in / Sign up

Export Citation Format

Share Document