The design, fabrication, and testing of a low temperature DC/DC converter control circuit for deep space applications

1999 ◽  
Author(s):  
Timothy Miller
2007 ◽  
Vol 95 (11) ◽  
pp. 2142-2156 ◽  
Author(s):  
Kenneth S. Andrews ◽  
Dariush Divsalar ◽  
Sam Dolinar ◽  
Jon Hamkins ◽  
Christopher R. Jones ◽  
...  

Author(s):  
P. Praveena

<p>Present emerging trend in space science applications is to explore and utilize the deep space. Image coding in deep space communications play vital role in deep space missions. Lossless image compression has been recommended for space science exploration missions to retain the quality of image. On-board memory and bandwidth requirement is reduced by image compression. Programmable logic like field programmable gate array (FPGA) offers an attractive solution for performance and flexibility required by real time image compression algorithms. The powerful feature of FPGA is parallel processing which allows the data to process quicker than microprocessor implementation. This paper elaborates on implementing low complexity lossless image compression algorithm coder on FPGA with minimum utilization of onboard resources for deep space applications.</p>


2012 ◽  
Vol 78 (12) ◽  
pp. 4169-4174 ◽  
Author(s):  
T. Pottage ◽  
S. Macken ◽  
K. Giri ◽  
J. T. Walker ◽  
A. M. Bennett

ABSTRACTThe currently used microbial decontamination method for spacecraft and components uses dry-heat microbial reduction at temperatures of >110°C for extended periods to prevent the contamination of extraplanetary destinations. This process is effective and reproducible, but it is also long and costly and precludes the use of heat-labile materials. The need for an alternative to dry-heat microbial reduction has been identified by space agencies. Investigations assessing the biological efficacy of two gaseous decontamination technologies, vapor hydrogen peroxide (Steris) and chlorine dioxide (ClorDiSys), were undertaken in a 20-m3exposure chamber. Five spore-formingBacillusspp. were exposed on stainless steel coupons to vaporized hydrogen peroxide and chlorine dioxide gas. Exposure for 20 min to vapor hydrogen peroxide resulted in 6- and 5-log reductions in the recovery ofBacillus atrophaeusandGeobacillus stearothermophilus, respectively. However, in comparison, chlorine dioxide required an exposure period of 60 min to reduce bothB. atrophaeusandG. stearothermophilusby 5 logs. Of the three otherBacillusspp. tested,Bacillus thuringiensisproved the most resistant to hydrogen peroxide and chlorine dioxide with D values of 175.4 s and 6.6 h, respectively. Both low-temperature decontamination technologies proved effective at reducing theBacillusspp. tested within the exposure ranges by over 5 logs, with the exception ofB. thuringiensis, which was more resistant to both technologies. These results indicate that a review of the indicator organism choice and loading could provide a more appropriate and realistic challenge for the sterilization procedures used in the space industry.


2005 ◽  
Author(s):  
C. Bosswetter ◽  
A.P. Wolframm ◽  
J-M. Hermer ◽  
O. Oudot ◽  
J.L. Perrot ◽  
...  

2013 ◽  
Author(s):  
Vojtech Michálek ◽  
Michael Vacek ◽  
Ivan Procházka ◽  
Josef Blazej ◽  
Marek Peca

Sign in / Sign up

Export Citation Format

Share Document