High-Order Spectral Volume Method for the Navier-Stokes Equations on Unstructured Grids

Author(s):  
Yuzhi Sun ◽  
Z.J. Wang
Author(s):  
Roque Corral ◽  
Javier Crespo

A novel high-order finite volume method for the resolution of the Navier-Stokes equations is presented. The approach combines a third order finite volume method in an unstructured two-dimensional grid, with a spectral approximation in the third dimension. The method is suitable for the resolution of complex two-dimensional geometries that require the third dimension to capture three-dimensional non-linear unsteady effects, such as those for instance present in linear cascades with separated bubbles. Its main advantage is the reduction in the computational cost, for a given accuracy, with respect standard finite volume methods due to the inexpensive high-order discretization that may be obtained in the third direction using fast Fourier transforms. The method has been applied to the resolution of transitional bubbles in flat plates with adverse pressure gradients and realistic two-dimensional airfoils.


2016 ◽  
Vol 42 ◽  
pp. 1660167
Author(s):  
TIANHAO XU ◽  
LONG CHEN

Graphics processing units have gained popularities in scientific computing over past several years due to their outstanding parallel computing capability. Computational fluid dynamics applications involve large amounts of calculations, therefore a latest GPU card is preferable of which the peak computing performance and memory bandwidth are much better than a contemporary high-end CPU. We herein focus on the detailed implementation of our GPU targeting Reynolds-averaged Navier-Stokes equations solver based on finite-volume method. The solver employs a vertex-centered scheme on unstructured grids for the sake of being capable of handling complex topologies. Multiple optimizations are carried out to improve the memory accessing performance and kernel utilization. Both steady and unsteady flow simulation cases are carried out using explicit Runge-Kutta scheme. The solver with GPU acceleration in this paper is demonstrated to have competitive advantages over the CPU targeting one.


2012 ◽  
Vol 12 (1) ◽  
pp. 247-260 ◽  
Author(s):  
Ravi Kannan ◽  
Zhijian Wang

AbstractThe concept of diffusion regulation (DR) was originally proposed by Jaisankar for traditional second order finite volume Euler solvers. This was used to decrease the inherent dissipation associated with using approximate Riemann solvers. In this paper, the above concept is extended to the high order spectral volume (SV) method. The DR formulation was used in conjunction with the Rusanov flux to handle the inviscid flux terms. Numerical experiments were conducted to compare and contrast the original and the DR formulations. These experiments demonstrated (i) retention of high order accuracy for the new formulation, (ii) higher fidelity of the DR formulation, when compared to the original scheme for all orders and (iii) straightforward extension to Navier Stokes equations, since the DR does not interfere with the discretization of the viscous fluxes. In general, the 2D numerical results are very promising and indicate that the approach has a great potential for 3D flow problems.


Sign in / Sign up

Export Citation Format

Share Document