Preliminary Results from the Capillary Flow Experiment Aboard ISS: the Moving Contact Line Boundary Condition

Author(s):  
Mark Weislogel ◽  
Charles Bunnell ◽  
Carol Kurta ◽  
Eric Golliher ◽  
Robert Green ◽  
...  
Author(s):  
Shi-Ming Li ◽  
Danesh K. Tafti

A mean-field free-energy lattice Boltzmann method (LBM) is applied to simulate moving contact line dynamics. It is found that the common bounceback boundary condition leads to an unphysical velocity at the solid wall in the presence of surface forces. The magnitude of the unphysical velocity is shown proportional to the local force term. The velocity-pressure boundary condition is generalized to solve the problem of the unphysical velocity. The simulation results are compared with three different theories for moving contact lines, including a hydrodynamic theory, a molecular kinetic theory, and a linear cosine law of moving contact angle versus capillary number. It is shown that the current LBM can be used to replace the three theories in handling moving contact line problems.


1976 ◽  
Vol 77 (4) ◽  
pp. 665-684 ◽  
Author(s):  
E. B. Dussan V.

The singularity at the contact line which is present when the usual fluidmechanical modelling assumptions are made is removed by permitting the fluid to slip along the wall. The aim of this study is to assess the sensitivity of the overall flow field to the form of the slip boundary condition. Explicit solutions are obtained for three different slip boundary conditions. Two length scales emerge: the slip length scale and the meniscus length scale. It is found that on the slip length scale the flow fields are quite different; however, when viewed on the meniscus length scale, i.e. the length scale on which almost all fluidmechanical measurements are made, all of the flow fields appear the same. It is found that the characteristic of the slip boundary condition which affects the overall flow field is the magnitude of the slip length.


2016 ◽  
Vol 310 ◽  
pp. 329-341 ◽  
Author(s):  
J. Luo ◽  
X.Y. Hu ◽  
N.A. Adams

Sign in / Sign up

Export Citation Format

Share Document