Dynamic Stiffness Formulation and Free Vibration Analysis of a Moving Timoshenko Beam

Author(s):  
J. Ranjan Banerjee ◽  
Huijuan Su ◽  
W Gunawardana
Author(s):  
Valentin Fogang

This study presents an exact solution to the free vibration analysis of a uniform Timoshenko beam using an analytical approach, a harmonic vibration being assumed. The Timoshenko beam theory covers cases associated with small deflections based on shear deformation and rotary inertia considerations. In this paper, a moment-shear force-circular frequency-curvature relationship was presented. The complete study was based on this relationship and closed-form expressions of efforts and deformations were derived. The free vibration response of single-span systems, as well as that of spring-mass systems, was analyzed; closed-form formulations of matrices expressing the boundary conditions were presented and the natural frequencies were determined by solving the eigenvalue problem. Systems with intermediate mass, spring, or spring-mass system were also analyzed. Furthermore, first-order dynamic stiffness matrices in local coordinates were derived. Finally, second-order analysis of beams resting on an elastic Winkler foundation was conducted. The results obtained in this paper were in good agreement with those of other studies.


Author(s):  
Valentin Fogang

This study presents an analytical solution to the free vibration analysis of a uniform Timoshenko beam. The Timoshenko beam theory covers cases associated with small deflections based on shear deformation and rotary inertia considerations. A material law combining bending, shear, curvature, and natural frequency is presented. This complete study is based on this material law and closed-form solutions are found. The free vibration response of single-span systems, as well as that of spring-mass systems, is analyzed. Closed-form formulations of matrices expressing the boundary conditions are presented; the natural frequencies are determined by solving the eigenvalue problem. First-order dynamic stiffness matrices in local coordinates are determined. Finally, second-order analysis of beams resting on an elastic Winkler foundation is conducted.


1998 ◽  
Vol 22 (3) ◽  
pp. 231-250 ◽  
Author(s):  
Cha’o Kuang Chen ◽  
Shing Huei Ho

This study introduces using differential transform to solve the free vibration problems of a general elastically end restrained non-uniform Timoshenko beam. First, differential transform is briefly introduced. Second, taking differential transform of a non-uniform Timoshenko beam vibration problem, a set of difference equations is derived. Doing some simple algebraic operations on these equations, we can determine any i-th natural frequency, the closed form series solution of any i-th normalized mode shape. Finally, three examples are given to illustrate the accuracy and efficiency of the present method.


Sign in / Sign up

Export Citation Format

Share Document