Oscillatory Response of a Ducted Non-Premixed Flame: Variable Density and Shear-Layer Effects

Author(s):  
Satyanarayanan R. Chakravarthy ◽  
C Balaji
2014 ◽  
Vol 754 ◽  
pp. 161-183 ◽  
Author(s):  
P. Pearce ◽  
J. Daou

AbstractWe investigate the propagation of a premixed flame subject to thermal expansion through a narrow channel against a Poiseuille flow of large amplitude. This is the first study to consider the effect of a large-amplitude flow, characterised by a Péclet number of order one, $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Pe}=O(1)$, on a variable-density premixed flame in the asymptotic limit of a narrow channel. It is also the first study on Taylor dispersion in the context of combustion. The relationship between the propagation speed and Péclet number is investigated, with the effect of large flame-front thickness $\epsilon $ and activation energy $\beta $ studied asymptotically in an appropriate distinguished limit. The premixed flame for $\epsilon \to \infty $, with $\mathit{Pe}=O(1)$, is found to be governed by the equation for a planar premixed flame with an effective diffusion coefficient. In this case the premixed flame can be considered to be in the Taylor regime of enhanced dispersion due to a parallel flow. The infinite activation energy limit $\beta \to \infty $ is taken to provide an analytical description of the propagation speed. Corresponding results are obtained for a premixed flame in the constant-density approximation. The asymptotic results are compared to numerical results obtained for selected values of $\epsilon $ and $\beta $ and for moderately large values of the Péclet number. Physical reasons for the differences in propagation speed between constant- and variable-density flames are discussed. Finally, the asymptotic results are shown to agree with those of previous studies performed in the limit $\mathit{Pe}\to 0$.


2015 ◽  
Vol 162 (2) ◽  
pp. 345-367 ◽  
Author(s):  
Stephan Schlimpert ◽  
Santosh Hemchandra ◽  
Matthias Meinke ◽  
Wolfgang Schröder

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Finn Lückoff ◽  
Moritz Sieber ◽  
Christian Oliver Paschereit ◽  
Kilian Oberleithner

Abstract The reduction of NOx emissions remains a driving factor in the design process of swirl-stabilized combustion systems, to meet legislative restrictions. In reacting swirl flows, hydrodynamic coherent structures, such as periodic large-scale vortices in the shear layer, induce zones with increased heat release rate fluctuations in connection with temperature peaks, which lead to an increase of NOx emissions. Such large-scale vortices can be induced by the helical coherent structure known as precessing vortex core (PVC), which influences the flow and flame dynamics under certain operating conditions. We developed an active flow control system, allowing for a targeted actuation of the PVC, to investigate its impact on combustion properties such as NOx emissions. In this work, a perfectly premixed flame, which slightly damps the PVC, is studied in detail. Since the PVC is slightly damped, it can be precisely excited by means of open-loop flow control. In connection with time-resolved OH*-chemiluminescence and stereoscopic particle image velocimetry (PIV) measurements, the impact of the actuated PVC on flow and flame dynamics is characterized. It turns out that the PVC rolls up the inner shear layer, which results in an interaction of PVC-induced vortices and flame. This interaction considerably influences the measured level of NOx emissions, which grows with increasing PVC amplitude in a perfectly premixed flame. Nearly, the same increase is measured for partially premixed conditions. This is in contrast to previous studies, where the PVC is assumed to reduce the NOx emissions due to vortex-enhanced mixing.


1986 ◽  
Vol 150 (12) ◽  
pp. 632
Author(s):  
S.P. Mikheev ◽  
A.Yu. Smirnov

2016 ◽  
Vol 26 (8) ◽  
pp. 815-826 ◽  
Author(s):  
Qing-fei Fu ◽  
Li-Jun Yang ◽  
Chao-Jie Mo

Sign in / Sign up

Export Citation Format

Share Document