Taylor dispersion and thermal expansion effects on flame propagation in a narrow channel

2014 ◽  
Vol 754 ◽  
pp. 161-183 ◽  
Author(s):  
P. Pearce ◽  
J. Daou

AbstractWe investigate the propagation of a premixed flame subject to thermal expansion through a narrow channel against a Poiseuille flow of large amplitude. This is the first study to consider the effect of a large-amplitude flow, characterised by a Péclet number of order one, $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\mathit{Pe}=O(1)$, on a variable-density premixed flame in the asymptotic limit of a narrow channel. It is also the first study on Taylor dispersion in the context of combustion. The relationship between the propagation speed and Péclet number is investigated, with the effect of large flame-front thickness $\epsilon $ and activation energy $\beta $ studied asymptotically in an appropriate distinguished limit. The premixed flame for $\epsilon \to \infty $, with $\mathit{Pe}=O(1)$, is found to be governed by the equation for a planar premixed flame with an effective diffusion coefficient. In this case the premixed flame can be considered to be in the Taylor regime of enhanced dispersion due to a parallel flow. The infinite activation energy limit $\beta \to \infty $ is taken to provide an analytical description of the propagation speed. Corresponding results are obtained for a premixed flame in the constant-density approximation. The asymptotic results are compared to numerical results obtained for selected values of $\epsilon $ and $\beta $ and for moderately large values of the Péclet number. Physical reasons for the differences in propagation speed between constant- and variable-density flames are discussed. Finally, the asymptotic results are shown to agree with those of previous studies performed in the limit $\mathit{Pe}\to 0$.

2009 ◽  
Vol 638 ◽  
pp. 305-337 ◽  
Author(s):  
MARK SHORT ◽  
DAVID A. KESSLER

The influence of thermal expansion on the dynamics of thick to moderately thick premixed flames (flame thickness less than or comparable to the channel height) for a variable-density flow in a narrow, rectangular channel is explored. The study is conducted within the framework of the zero-Mach-number, variable-density Navier–Stokes equations. Both adiabatic and non-adiabatic channel walls are considered. A small Péclet number asymptotic solution is developed for steady, variable-density flame propagation in the narrow channel. The dynamics of channel flames are also examined numerically for O(1) Péclet numbers in configurations which include flame propagation in a semi-closed channel from the closed to the open end of the channel, flame propagation in a semi-closed channel towards the closed end of the channel and flame propagation in an open channel in which a Poiseuille flow (flame assisting or flame opposing) is imposed at the channel inlet. Comparisons of the finite-Péclet-number dynamics are made with the behaviour of the small-Péclet-number solutions. We also compare how thermal expansion modifies the flow dynamics from those determined by a constant-density model. The small-Péclet-number variable-density solution for a flame propagating in a circular pipe is given in the Appendix.


1996 ◽  
Vol 329 ◽  
pp. 413-443 ◽  
Author(s):  
C. G. Phillips ◽  
S. R. Kaye

In this paper we consider the development of shear dispersion following the introduction of a diffusing tracer substance into a tube or duct containing flowing fluid, with emphasis on the characterization of the temporal variation of concentration at a fixed axial position. Asymptotic results are derived by assuming that the distance downstream of the point of tracer introduction, appropriately non-dimensionalized, is large. First, we consider the central moments of the temporal concentration variation, including their dependence on transverse position and on the initial transverse distribution of tracer. The moments for finite Péclet number are expressed in terms of their infinite-Péclet-number counterparts, and the latter are given explicitly for Poiseuille flow. Then, assuming the Péclet number is infinite, we derive an approximate solution for the Green's function expressing tracer concentration following its introduction at an arbitrary point within the tube. The solution is expressed in terms of three numerically evaluated functions of a dimensionless time variable, with parametric dependence on the distance downstream of the point of tracer release. The method is illustrated by calculation of the approximate solution for dispersion in Poiseuille flow. Unlike previous approximations, the present solution is uniformly asymptotic and represents the tails of the concentration distribution as well as the approximately Gaussian central part; in these three regions, simpler analytic forms of the approximation are given. Comparison with previous computational solutions suggests the present approximation remains reasonably accurate even at quite short distances from the point where tracer is released.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hassan Waqas ◽  
Umair Manzoor ◽  
Zahir Shah ◽  
Muhammad Arif ◽  
Meshal Shutaywi

Background. The study of nanofluid gains interest of researchers because of its uses in treatment of cancer, wound treatment, fuel reserves, and elevating the particles in the bloodstream to a tumour. This artefact investigates the magnetohydrodynamic flow of Burgers nanofluid with the interaction of nonlinear thermal radiation, activation energy, and motile microorganisms across a stretching cylinder. Method. The developed partial differential equations (PDEs) are transformed into a structure of ODEs with the help of similarity transformation. The extracted problem is rectified numerically by using the bvp4c program in computational software MATLAB. The novelty of analysis lies in the fact that the impacts of bioconvection with magnetic effects on Burgers nanofluid are taken into account. Moreover, the behaviours of thermal conductivity and diffusivity are discussed in detail. The impacts of activation energy and motile microorganism are also explored. No work has been published yet in the literature survey according to the authors’ knowledge. The current observation is the extension of Khan et al.’s work [51]. Results. The consequences of the relevant parameters, namely, thermophoresis parameter, Brownian motion parameter, the reaction parameter, temperature difference parameter, activation energy, bioconvection Lewis number and Peclet number against the velocity of Burgers nanofluid, temperature profile for nanoliquid, the concentration of nanoparticles, and microorganisms field, have been explored in depth. The reports had major impacts in the development of medications for the treatment of arterial diseases including atherosclerosis without any need for surgery, which may reduce spending on cardiovascular and postsurgical problems in patients. Conclusions. The current investigation depicts that fluid velocity increases for uplifting values of mixed convection parameter. Furthermore, it is analyzed that flow of fluid is risen by varying the amount of Burgers fluid parameter. The temperature distribution is escalated by escalating the values of temperature ratio parameter and thermal conductivity parameter. The concentration field turns down for elevated values of Lewis number and Brownian motion parameter, while conflicting circumstances are observed for the thermophoresis parameter and solutal Biot number. Larger values of Peclet number reduce the microorganism’s field. Physically the current model is more significant in the field of applied mathematics. Furthermore, the current model is more helpful to improve the thermal conductivity of base fluids and heat transfer rate.


2002 ◽  
Vol 450 ◽  
pp. 131-167 ◽  
Author(s):  
NEIL J. BALMFORTH ◽  
YUAN-NAN YOUNG

In this study we investigate the Kolmogorov flow (a shear flow with a sinusoidal velocity profile) in a weakly stratified, two-dimensional fluid. We derive amplitude equations for this system in the neighbourhood of the initial bifurcation to instability for both low and high Péclet numbers (strong and weak thermal diffusion, respectively). We solve amplitude equations numerically and find that, for low Péclet number, the stratification halts the cascade of energy from small to large scales at an intermediate wavenumber. For high Péclet number, we discover diffusively spreading, thermal boundary layers in which the stratification temporarily impedes, but does not saturate, the growth of the instability; the instability eventually mixes the temperature inside the boundary layers, so releasing itself from the stabilizing stratification there, and thereby grows more quickly. We solve the governing fluid equations numerically to compare with the asymptotic results, and to extend the exploration well beyond onset. We find that the arrest of the inverse cascade by stratification is a robust feature of the system, occurring at higher Reynolds, Richards and Péclet numbers – the flow patterns are invariably smaller than the domain size. At higher Péclet number, though the system creates slender regions in which the temperature gradient is concentrated within a more homogeneous background, there are no signs of the horizontally mixed layers separated by diffusive interfaces familiar from doubly diffusive systems.


2000 ◽  
Vol 42 (1-2) ◽  
pp. 319-324 ◽  
Author(s):  
H. Rubin ◽  
A. Rabideau

This study presents an approximate analytical model, which can be useful for the prediction and requirement of vertical barrier efficiencies. A previous study by the authors has indicated that a single dimensionless parameter determines the performance of a vertical barrier. This parameter is termed the barrier Peclet number. The evaluation of barrier performance concerns operation under steady state conditions, as well as estimates of unsteady state conditions and calculation of the time period requires arriving at steady state conditions. This study refers to high values of the barrier Peclet number. The modeling approach refers to the development of several types of boundary layers. Comparisons were made between simulation results of the present study and some analytical and numerical results. These comparisons indicate that the models developed in this study could be useful in the design and prediction of the performance of vertical barriers operating under conditions of high values of the barrier Peclet number.


1979 ◽  
Vol 44 (4) ◽  
pp. 1218-1238
Author(s):  
Arnošt Kimla ◽  
Jiří Míčka

The problem of convective diffusion toward the sphere in laminar flow around the sphere is solved by combination of the analytical and net methods for the region of Peclet number λ ≥ 1. The problem was also studied for very small values λ. Stability of the solution has been proved in relation to changes of the velocity profile.


1983 ◽  
Vol 48 (6) ◽  
pp. 1571-1578 ◽  
Author(s):  
Ondřej Wein

Theory has been formulated of a convective rotating spherical electrode in the creeping flow regime (Re → 0). The currently available boundary layer solution for Pe → ∞ has been confronted with an improved similarity description applicable in the whole range of the Peclet number.


Author(s):  
Thierry A Blanchet

As in various manufacturing processes, in sliding tests with scanning motions to extend the sliding distance over fresh countersurface, temperature rise during any pass is bolstered by heating during prior passes over neighboring tracks, providing a “heat accumulation effect” with persisting temperature rises contributing to an overall temperature rise of the current pass. Conduction modeling is developed for surface temperature rise as a function of numerous inputs: power and size of heat source; speed and stroke length, and track increment of scanning motion; and countersurface thermal properties. Analysis focused on mid-stroke location for passes of a square uniform heat flux sufficiently far into the rectangular patch being scanned from the first pass at its edge that steady heat accumulation effect response is adopted, focusing on maximum temperature rise experienced across the pass' track. The model is non-dimensionalized to broaden the applicability of the output of its runs. Focusing on practical “high” scanning speeds, represented non-dimensionally by Peclet number (in excess of 40), applicability is further broadened by multiplying non-dimensional maximum temperature rise by the square root of Peclet number as model output. Additionally, investigating model runs at various non-dimensional speed (Peclet number) and reciprocation period values, it appears these do not act as independent inputs, but instead with their product (non-dimensional stroke length) as a single independent input. Modified maximum temperature rise output appears to be a function of only two inputs, increasing with decreasing non-dimensional values of stroke length and scanning increment, with outputs of models runs summarized compactly in a simple chart.


Sign in / Sign up

Export Citation Format

Share Document