Determination of Influence Boundaries in CFD from Acoustic Intensity Distribution

Author(s):  
H. Q. Yang
Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5066
Author(s):  
José Miguel Fuster ◽  
Sergio Pérez-López ◽  
Francisco Belmar ◽  
Pilar Candelas

In this work, we analyze the effect of predistortion techniques on the focusing profile of Fresnel Zone Plates (FZPs) in ultrasound applications. This novel predistortion method is based on either increasing or decreasing the width of some of the FZP Fresnel rings by a certain amount. We investigate how the magnitude of the predistortion, as well as the number and location of the predistorted rings, influences the lens focusing profile. This focusing profile can be affected in different ways depending on the area of the lens where the predistortion is applied. It is shown that when the inner area of the lens, closer to its center, is predistorted, this technique allows the control of the focal depth at the main focus. However, when the predistortion is applied to an area farther from the center of the lens, the acoustic intensity distribution among the main focus and the closest adjacent secondary foci can be tailored at a certain degree. This predistortion technique shows great potential and can be used to control, modify and shape the FZP focusing profile in both industrial and therapeutic applications.


1977 ◽  
Vol 1977 (1) ◽  
pp. 153-156 ◽  
Author(s):  
Bruce Friedman

ABSTRACT Light scattering techniques are used in several oil-in-water monitors, proposed or in existence. Particulate matter which may interfere with these monitors is also frequently found in oily wastes. An analysis is made of the potential of using measurements of the angular intensity distribution of scattered light in conjunction with determination of the state of polarization of the scattered light for discriminating between oil and particulates. The size conditions which apply to the oil droplets and particulates relative to the incident light allow the scattered light angular intensity distribution to be treated as a consequence of a combination of classical diffraction and of geometrical refraction and reflection. The state of polarization of the scattered light for oil droplets is investigated using expressions for the electric field which are approximations to the expressions of the Mie theory. For the particulate matter, the state of polarization is probed on the basis of light reflected from a plane. It is found that it would be difficult to discriminate between oil and particulates using measurements of the angular intensity distribution of scattered light even in conjunction with the determination of the state of polarization of the scattered light in a real life situation.


1996 ◽  
Vol 13 (2) ◽  
pp. 101-117 ◽  
Author(s):  
A. Teramo ◽  
D. Termini ◽  
E. Stillitani ◽  
A. Bottari

Sign in / Sign up

Export Citation Format

Share Document