Jet Impingement Heat Transfer from a Circular Cylinder Located Between Confining Walls

Author(s):  
Mustahib Imraan ◽  
Rajnish Sharma
2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Sharad Pachpute ◽  
B. Premachandran

In this paper, heat transfer and effectiveness of a turbulent slot jet impinging over a heated circular cylinder have been investigated numerically by varying the ratio of jet temperature to the ambient temperature, Θj = Tj/Tamp, from 0.7 to 1.2. In all cases, the ambient temperature (Tamb) is assumed to be constant (300 K). The Reynolds number defined based on the average nozzle exit velocity, the diameter of the cylindrical target (D), and properties at the nozzle exit temperature, ReD=ρVD/μ is varied from 6000 to 20,000. The ratio of cylinder diameter to the slot width, D/S = 5.5, 8.5, and 17 are considered and the nondimensional distance from the nozzle exit to the cylinder, H/S is varied in the range of 2 ≤ H/S ≤ 12. The v′2¯−f turbulence model was used for numerical simulations. Numerical results reveal that the local Nusselt number is found to be higher at the stagnation point in the case of cold jet impingement at Θj = 0.7. The local heat transfer at the rear side of the cylinder is 8–18% less as compared to that of Θj = 1.0 for ReD = 6000. The local effectiveness calculated over a circular cylinder strongly depends on H/S and D/S. Based on the parametric study, a correlation has been provided for the local effectiveness at the stagnation point.


Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop

Abstract Nanoliquid impingement heat transfer with phase change material (PCM) installed radial system is considered. Study is performed by using finite element method for various values of Reynolds numbers (100 ≤ Re ≤ 300), height of PCM (0.25H ≤ hpcm = 0.7H ≤ 0.75H) and plate spacing (0.15H ≤ hpcm = 0.7H ≤ 0.40H). Different configurations with using water, nanoliquid and nanoliquid+PCM are compared in terms of heat transfer improvement. Thermal performance is improved by using PCM while best performance is achieved with nanoliquid and PCM installed configuration. At Re=100 and Re=300, heat transfer improvements of 26% and 25.5% are achieved with nanoliquid+PCM system as compared to water without PCM. Height of the PCM layer also influences the heat transfer dynamic behavior while there is 12.6% variation in the spatial average heat transfer of the target surface with the lowest and highest PCM height while discharging time increases by about 76.5%. As the spacing between the plates decreases, average heat transfer rises and there is 38% variation.


Sign in / Sign up

Export Citation Format

Share Document