rear side
Recently Published Documents


TOTAL DOCUMENTS

405
(FIVE YEARS 131)

H-INDEX

24
(FIVE YEARS 4)

2021 ◽  
pp. 0958305X2110655
Author(s):  
V. Tirupati Rao ◽  
Y. Raja Sekhar

Thermal management in hybrid Photovoltaic/Thermal (PVT) collectors is essential to derive electrical and thermal energy from a single system. Effective removal of heat gained by the photovoltaic module during its operation is possible with a proper thermal absorber design. Hence, thermal absorber design has gained prominence, and various design techniques were attempted in the literature to enhance energy delivery among different stakeholders. Most research groups tried to design absorber configurations attached to the PV panel's front or rear side. Absorber design configurations include various channel materials and geometry as well as other physical parameter combinations. The quantitative thermal energy delivery from the system could vary based on the absorber configuration and be useful for different applications. This study reports a detailed review to understand the relation between thermal absorber design configurations and the potential energy recovery from PVT systems. This study helps the designers identify channel designs, materials, and adequate working fluids for enhanced heat transfer to anticipate better thermal management of PVT systems. Challenges and suggestions to develop state of the art thermal absorber designs for relative commercial thermal applications using PVT systems are conveyed.


2021 ◽  
Author(s):  
Malte Kumkar ◽  
Myriam Kaiser ◽  
Jonas Kleiner ◽  
Daniel Günther Grossmann ◽  
Daniel Flamm ◽  
...  

For the development of industrial NIR ultrafast laser processing of transparent materials, the absorption inside the bulk material has to be controlled. Applications we aim for are front and rear side ablation, drilling and inscription of modifications for cleaving and selective laser etching of glass and sapphire in sheet geometry. We applied pump probe technology and in situ stress birefringence microscopy for fundamental studies on the influence of energy and duration (100 fs – 20 ps), temporal and spatial spacing, focusing and beam shaping of the laser pulses. Applying pump probe technique we are able to visualize differences of spatio-temporal build up of absorption, self focusing, shock wave generation for standard, multispot and beam shaped focusing. Incubation effects and disturbance of beam propagation due to modifications or ablation can be observed. In-situ imaging of stress birefringence gained insight in transient build up of stress with and without translation. The results achieved so far, demonstrate that transient stress has to be taken into account in scaling the laser machining throughput of brittle materials. Furthermore it points out that transient stress birefringence is a good indicator for accumulation effects, supporting tailored processing strategies.Cutting results achieved for selective laser etching by single pass laser modification exemplifies the benefits of process development supported by in situ diagnostics.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8209
Author(s):  
Julian Schumann ◽  
Bert Schiebler ◽  
Federico Giovannetti

In order to increase the overall solar energy gain of evacuated tube collectors, rear-side reflectors are used. In this way, the otherwise unused incident radiation between the tubes can be reflected back to the absorber, and the performance of the collector can be improved. In this paper, the use of a low-cost, diffusely reflecting, trapezoidal roof covering made from a galvanized metal sheet is investigated and compared to a high-quality, specularly reflecting plane reflector made of aluminum. For this purpose, ray-tracing analysis and TRNSYS simulations were carried out. In the ray-tracing analysis, the experimentally determined zero-loss collector efficiency η0 as well as the incident angle modifiers for each reflector can be reproduced with an error lower than 7.5%. Thermal system simulations show that the performance of both reflectors is comparable. The use of the low-cost reflector leads to an increase in annual collector output of around 30% compared to an increase with the specular reflector of around 33%. Considering a typical domestic hot water system, both reflectors enable an increase in the solar annual yield of approx. 11%.


2021 ◽  
Vol 9 (12) ◽  
pp. 232596712110591
Author(s):  
Rubén Sánchez-Gómez ◽  
Carlos Romero-Morales ◽  
Álvaro Gómez-Carrión ◽  
Ignacio Zaragoza-García ◽  
Carlos Martínez-Sebastián ◽  
...  

Background: Classical medial wedge (CMW) orthoses have been prescribed to treat overpronation foot pathologies in runners. The effects of a novel supination orthosis (NSO) on the surface electromyography (EMG) activity of the peroneus longus (PL) muscle during a complete cycle of running have yet to be tested. Purpose/Hypothesis: The purpose of this study was to compare the EMG activity of the PL in participants wearing CMW orthoses and NSOs versus neutral running shoes (NRS) during a full cycle of running gait. It was hypothesized that the PL muscle activity would be lower for the NSO compared with CMW or NRS. Study Design: Controlled laboratory study. Methods: Included were 31 healthy recreational runners of both sexes (14 male and 17 female; mean age, 38.58 ± 4.02 years) with a neutral Foot Posture Index and standard rearfoot-strike pattern. Participants ran on a treadmill at 9 km/h while wearing NSO (3-, 6-, and 9-mm thicknesses), CMW (3-, 6-, and 9-mm thicknesses), and NRS, for a total of 7 different conditions randomly selected, while the EMG signal activity of the PL was recorded for 30 seconds. Each trial was recorded 3 times, and the intraclass correlation coefficient (ICC) to test reliability of the measurements was calculated. The Wilcoxon pair to pair nonparametric test with Bonferroni correction was performed to analyze differences among the conditions. Results: The reliability of all assessments was almost perfect (ICC, >0.81). For both the CMW and NSO, regardless of thickness, the PL activity was statistically significantly lower compared with the NRS ( P < .05 for all). For all CMW thicknesses, the PL activity was lower compared with the respective NSO thicknesses, with the 3-mm thickness having the largest difference (CMW3mm, 18.63 ± 4.64 vs NSO3mm, 20.78 ± 4.99 mV; P < .001). Conclusion: Both CMW and NSO produced reduced EMG activity of the PL muscle; therefore, they can be prescribed to treat overpronation pathologies without associated PL strain concerns. In addition, the NSO saved the enhancement material placed on the medial-rear side of CMW, making it easier to wear sports shoes. Clinical Relevance: Knowing the safety of CMW and NSO will aid in understanding treatments for overpronation pathologies.


Author(s):  
Nagaraju Guthikonda ◽  
Sai Shiva S ◽  
E. Manikanta ◽  
Kameswari P S L D ◽  
V. R. Ikkurthi ◽  
...  

Abstract We present results on the dynamics of laser-induced blow-off shockwave generation from the rear side of 20 µm thick aluminum and copper foil confined with a glass (BK7) substrate. These foils are irradiated by 10 ns, 532 nm laser pulses of energy 25 – 200 mJ corresponding to the intensity range 0.2 – 10 GW/cm2. The plasma temperature at the glass-foil interface is observed to play an important role in the coupling of laser energy to the foil. From our experiments and 1D hydrodynamic simulations, we confirm that moving the glass-foil interface away from the focal plane led to (a) enhanced absorption of the laser beam by the foil resulting in ~ 30 % higher blow-off shock velocities (b) significant changes in the material ejection in terms of increased blow-off mass of the foil (c) lower plasma density and temperatures. The material ejection as well as blow-off shock velocity is higher for Al compared to Cu. The simulated shock evolution in ambient air shows a reasonably good agreement with the experimental results.


Author(s):  
Antje Kilias ◽  
Yu-Tao Lee ◽  
Ulrich P Froriep ◽  
Charlotte Sielaff ◽  
Dominik Moser ◽  
...  

Abstract Objective. Recording and stimulating neuronal activity across different brain regions requires interfacing at multiple sites using dedicated tools while tissue reactions at the recording sites often prevent their successful long-term application. This implies the technological challenge of developing complex probe geometries while keeping the overall footprint minimal, and of selecting materials compatible with neural tissue. While the potential of soft materials in reducing tissue response is uncontested, the implantation of these materials is often limited to reliably target neuronal structures across large brain volumes. Approach. We report on the development of a new multi-electrode array exploiting the advantages of soft and stiff materials by combining 7-µm-thin polyimide wings carrying platinum electrodes with a silicon backbone enabling a safe probe implantation. The probe fabrication applies microsystems technologies in combination with a temporal wafer fixation method for rear side processing, i.e. grinding and deep reactive ion etching, of slender probe shanks and electrode wings. The wing-type neural probes are chronically implanted into the entorhinal-hippocampal formation in the mouse for in vivo recordings of freely behaving animals. Main results. Probes comprising the novel wing-type electrodes have been realized and characterized in view of their electrical performance and insertion capability. Chronic electrophysiological in vivo recordings of the entorhinal-hippocampal network in the mouse of up to 104 days demonstrated a stable yield of channels containing identifiable multi-unit and single-unit activity outperforming probes with electrodes residing on a Si backbone. Significance. The innovative fabrication process using a process compatible, temporary wafer bonding allowed to realize new Michigan style probe arrays. The wing-type probe design enables a µm-precise probe insertion into brain tissue and long-term stable recordings of unit activity due to the application of a stable backbone and 7-µm-thin probe wings provoking locally a minimal tissue response and protruding from the glial scare of the backbone.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qingtao Gong ◽  
Zhanyang Chen ◽  
Hongbin Gui ◽  
Dong Yu

The underwater acoustic radiation of the submarine power cabin has recently become a hot topic in the industry and also in the academia. In this article, the vibration and underwater acoustic radiation of a ring-stiffened conical shell with bases are investigated numerically by means of the combination of the finite element method and boundary element method. The acoustic radiation field is obtained by the traditional acoustic field model and ISO acoustic field model, respectively. A series of numerical examples are given, and the results are compared. Besides, the sound pressure at different positions with frequency is further studied. It is shown that the sound radiated by the structure mainly propagates to the side directions of the shell and propagates relatively less to the front side and the rear side.


Author(s):  
Kai Sporleder ◽  
Jan Bauer ◽  
Bengt Jäckel ◽  
Volker Nauman ◽  
Marko Turek ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2042 (1) ◽  
pp. 012114
Author(s):  
Dongjun Mah ◽  
Michael Kim ◽  
Athanasios Tzempelikos

Abstract The concept of integrating programmable low-cost cameras into the office infrastructure and BMS for real-time, web-based sensing and control of the luminous environment in buildings is presented in this study. Experiments were conducted to evaluate the potential of predicting the luminance field perceived by an office occupant using a programmable calibrated HDR camera installed at the rear side of a computer monitor or on the wall behind the occupant, for a variety of sky conditions and shading options. The generated luminance maps using Python scripts with OpenCV packages were further processed to extract daylighting and glare metrics using Evalgare. The results showed that: (i) among the different camera resolutions that were compared, the 330x330 resolution was selected as the best option to balance between accurate capturing of visual environment and comfort and computational efficiency; (ii) a camera sensor embedded on the rear side of a computer screen could capture interior visual conditions consistently similarly to those viewed by the occupant, except for sunny conditions without proper shading protection. This prototype study paves the way for luminance monitoring and daylight control using programmable low-cost camera sensors embedded into the office infrastructure.


Sign in / Sign up

Export Citation Format

Share Document