Energy Management for Fuel Cell Powered Hybrid-Electric Aircraft

Author(s):  
Thomas Bradley ◽  
Blake Moffitt ◽  
David Parekh ◽  
Thomas Fuller ◽  
Dimitri Mavris
2019 ◽  
Vol 1 (3) ◽  
Author(s):  
Zhiyu Huang ◽  
Caizhi Zhang ◽  
Tao Zeng ◽  
Chen Lv ◽  
Siew H. Chan

2020 ◽  
Vol 92 (6) ◽  
pp. 851-861 ◽  
Author(s):  
José Pedro Soares Pinto Leite ◽  
Mark Voskuijl

Purpose In recent years, increased awareness on global warming effects led to a renewed interest in all kinds of green technologies. Among them, some attention has been devoted to hybrid-electric aircraft – aircraft where the propulsion system contains power systems driven by electricity and power systems driven by hydrocarbon-based fuel. Examples of these systems include electric motors and gas turbines, respectively. Despite the fact that several research groups have tried to design such aircraft, in a way, it can actually save fuel with respect to conventional designs, the results hardly approach the required fuel savings to justify a new design. One possible path to improve these designs is to optimize the onboard energy management, in other words, when to use fuel and when to use stored electricity during a mission. The purpose of this paper is to address the topic of energy management applied to hybrid-electric aircraft, including its relevance for the conceptual design of aircraft and present a practical example of optimal energy management. Design/methodology/approach To address this problem the dynamic programming (DP) method for optimal control problems was used and, together with an aircraft performance model, an optimal energy management was obtained for a given aircraft flying a given trajectory. Findings The results show how the energy onboard a hybrid fuel-battery aircraft can be optimally managed during the mission. The optimal results were compared with non-optimal result, and small differences were found. A large sensitivity of the results to the battery charging efficiency was also found. Originality/value The novelty of this work comes from the application of DP for energy management to a variable weight system which includes energy recovery via a propeller.


2017 ◽  
Author(s):  
Jenica-Ileana Corcau ◽  
Liviu Dinca ◽  
Teodor Lucian Grigorie ◽  
Alexandru-Nicolae Tudosie

2020 ◽  
Vol 53 (7-8) ◽  
pp. 1493-1503
Author(s):  
Yang Li ◽  
Jili Tao ◽  
Liang Xie ◽  
Ridong Zhang ◽  
Longhua Ma ◽  
...  

Power allocation plays an important and challenging role in fuel cell and supercapacitor hybrid electric vehicle because it influences the fuel economy significantly. We present a novel Q-learning strategy with deterministic rule for real-time hybrid electric vehicle energy management between the fuel cell and the supercapacitor. The Q-learning controller (agent) observes the state of charge of the supercapacitor, provides the energy split coefficient satisfying the power demand, and obtains the corresponding rewards of these actions. By processing the accumulated experience, the agent learns an optimal energy control policy by iterative learning and maintains the best Q-table with minimal fuel consumption. To enhance the adaptability to different driving cycles, the deterministic rule is utilized as a complement to the control policy so that the hybrid electric vehicle can achieve better real-time power allocation. Simulation experiments have been carried out using MATLAB and Advanced Vehicle Simulator, and the results prove that the proposed method minimizes the fuel consumption while ensuring less and current fluctuations of the fuel cell.


Sign in / Sign up

Export Citation Format

Share Document