Detached Eddy Simulation of 3-D Wing Flutter with Fully Coupled Fluid-Structural Interaction

Author(s):  
Xiangying Chen ◽  
Gecheng Zha
Author(s):  
Hongsik Im ◽  
Xiangying Chen ◽  
Gecheng Zha

Detached eddy simulation of an aeroelastic self-excited instability, flutter in NASA Rotor 67 is conducted using a fully coupled fluid/structre interaction. Time accurate compressible 3D Navier-Stokes equations are solved with a system of 5 decoupled modal equations in a fully coupled manner. The 5th order WENO scheme for the inviscid flux and the 4th order central differencing for the viscous flux are used to accurately capture interactions between the flow and vibrating blades with the DES (detached eddy simulation) of turbulence. A moving mesh concept that can improve mesh quality over the rotor tip clearance was implemented. Flutter simulations were first conducted from choke to stall using 4 blade passages. Stall flutter initiated at rotating stall onset, grows dramatically with resonance. The frequency analysis shows that resonance occurs at the first mode of the rotor blade. Before stall, the predicted responses of rotor blades decayed with time, resulting in no flutter. Full annulus simulation at peak point verifies that one can use the multi-passage approach with periodic boundary for the flutter prediction.


2017 ◽  
Vol 71 ◽  
pp. 199-216 ◽  
Author(s):  
Jia-ye Gan ◽  
Hong-Sik Im ◽  
Xiang-ying Chen ◽  
Ge-Cheng Zha ◽  
Crystal L. Pasiliao

Sign in / Sign up

Export Citation Format

Share Document