Prediction of a Supersonic Wing Flutter Boundary Using a High Fidelity Detached Eddy Simulation

Author(s):  
Hongsik Im ◽  
Xiangying Chen ◽  
Gecheng Zha
2017 ◽  
Vol 71 ◽  
pp. 199-216 ◽  
Author(s):  
Jia-ye Gan ◽  
Hong-Sik Im ◽  
Xiang-ying Chen ◽  
Ge-Cheng Zha ◽  
Crystal L. Pasiliao

Author(s):  
Dun Lin ◽  
Xinrong Su ◽  
Xin Yuan

In this work, the flows inside the high pressure turbine (HPT) vane and stage are studied with the help of a high-fidelity delayed detached eddy simulation (DDES) code. This work intends to study the fundamental nozzle/blade interaction with special attention paid to the development and transportation of the vane wake vortex. There are two motivations for this work. On the one hand, the high pressure turbine operates at both transonic Mach numbers and high Reynolds numbers, which imposes a great challenge to modern computational fluid dynamics (CFD), especially for scale-resolved simulation methods. An accurate and efficient high-fidelity CFD solver is very important for a thorough understanding of the flow physics and the design of more efficient HPT. On the other hand, the periodic wake vortex shedding is an important origin of turbine losses and unsteadiness. The wake and vortex not only cause losses themselves, but also interact with the shock wave (under transonic working condition), pressure waves, and have a strong impact on the downstream blade surface (affecting boundary layer transition and heat transfer). Built on one of our previous DDES simulations of a HPT vane VKI LS89, this work further investigates the development and length characteristics of the wake vortex, provides explanations of the length characteristics and reveals the transportation of the wake vortex into the downstream rotor passage along with its impact on the downstream aero-thermal performance.


Author(s):  
Sébastien Deck ◽  
Fabien Gand ◽  
Vincent Brunet ◽  
Saloua Ben Khelil

This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine–airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed.


Author(s):  
Dun Lin ◽  
Xiutao Bian ◽  
Xin Yuan ◽  
Xinrong Su

In this work, the flow inside a high pressure turbine (HPT) stage is studied with the help of a high-fidelity delayed detached eddy simulation (DDES) code. This work intends to study the flow topology in the HPT stage. There are two motivations for this work: On the one hand, high pressure turbines operates at both transonic Mach numbers and high Reynolds numbers, which imposes a challenge to modern computational fluid dynamics (CFD), especially for scale-resolved simulation methods. An accurate and efficient high-fidelity CFD solver is very important for a thorough understanding of the flow physics and the design of higher-efficient HPT. On the other hand, the wake vortex shedding and tip-leakage flow are important origins of turbine losses and unsteadiness. Built on our previous DDES simulations of HPT vane and stage, this work further investigates the flow in a full 3-dimension HPT stage. The flow topology in the HPT stage is delineated by Q-criterion iso-surfaces. The development of the horseshoe vortex and its interaction with induced vortex and wake vortex is discussed. The wake vortex transportation especially its interaction with the rotor horseshoe vortex is investigated. The flow structures in the tip clearance region are also revealed.


2021 ◽  
Vol 150 (4) ◽  
pp. A131-A131
Author(s):  
Takao Suzuki ◽  
Michael L. Shur ◽  
Michael K. Strelets ◽  
Andrey K. Travin ◽  
Philippe R. Spalart

Sign in / Sign up

Export Citation Format

Share Document