Detached Eddy Simulation of Transonic Rotor Stall Flutter Using a Fully Coupled Fluid-Structure Interaction

Author(s):  
Hongsik Im ◽  
Xiangying Chen ◽  
Gecheng Zha

Detached eddy simulation of an aeroelastic self-excited instability, flutter in NASA Rotor 67 is conducted using a fully coupled fluid/structre interaction. Time accurate compressible 3D Navier-Stokes equations are solved with a system of 5 decoupled modal equations in a fully coupled manner. The 5th order WENO scheme for the inviscid flux and the 4th order central differencing for the viscous flux are used to accurately capture interactions between the flow and vibrating blades with the DES (detached eddy simulation) of turbulence. A moving mesh concept that can improve mesh quality over the rotor tip clearance was implemented. Flutter simulations were first conducted from choke to stall using 4 blade passages. Stall flutter initiated at rotating stall onset, grows dramatically with resonance. The frequency analysis shows that resonance occurs at the first mode of the rotor blade. Before stall, the predicted responses of rotor blades decayed with time, resulting in no flutter. Full annulus simulation at peak point verifies that one can use the multi-passage approach with periodic boundary for the flutter prediction.

Author(s):  
Jiaye Gan ◽  
Hong-Sik Im ◽  
Ge-Cheng Zha

This paper solves the filtered Navier-Stokes equations to simulate stall inception of NASA compressor transonic Stage 35 with delayed detached eddy simulation (DDES). A low diffusion E-CUSP Riemann solver with a 3rd order MUSCL scheme for the inviscid fluxes and a 2nd order central differencing for the viscous terms are employed. A full annulus of the rotor-stator stage is simulated with an interpolation sliding boundary condition (BC) to resolve the rotor-stator interaction. The tip clearance is fully gridded to accurately resolve tip vortices and their effect on stall inception. The DDES results show that the stall inception of Stage 35 is initialized by a weak harmonic disturbance with the length scales of the full annulus and grows rapidly with two emerging spike like disturbance. The two spike disturbances propagate in counter rotational direction with about 42% of rotor speed. The spike stall cells cover about 6 blades. They lead to two stall cells grown circumferentially and inwardly.


2002 ◽  
Vol 124 (2) ◽  
pp. 413-423 ◽  
Author(s):  
L. S. Hedges ◽  
A. K. Travin ◽  
P. R. Spalart

The flow around a generic airliner landing-gear truck is calculated using the methods of Detached-Eddy Simulation, and of Unsteady Reynolds-Averaged Navier-Stokes Equations, with the Spalart-Allmaras one-equation model. The two simulations have identical numerics, using a multi-block structured grid with about 2.5 million points. The Reynolds number is 6×105. Comparison to the experiment of Lazos shows that the simulations predict the pressure on the wheels accurately for such a massively separated flow with strong interference. DES performs somewhat better than URANS. Drag and lift are not predicted as well. The time-averaged and instantaneous flow fields are studied, particularly to determine their suitability for the physics-based prediction of noise. The two time-averaged flow fields are similar, though the DES shows more turbulence intensity overall. The instantaneous flow fields are very dissimilar. DES develops a much wider range of unsteady scales of motion and appears promising for noise prediction, up to some frequency limit.


Author(s):  
Hong-Sik Im ◽  
Ge-Cheng Zha

In this paper non-synchronous vibration (NSV) of a GE axial compressor is simulated using a fully coupled fluid/strcuture interaction (FSI). Time accurate Navier-Stokes equations are solved with a system of 5 decoupled structure modal equations in a fully coupled manner. A 3rd order WENO scheme for the inviscid flux and a 2nd order central differencing for the viscous terms are used to resolve nonlinear interaction between vibrating blades and fluid flow. 1/7th annulus is used with a time shifted phase-lag (TSPL) boundary condition to reduce computational efforts. A fully conservative rotor/stator sliding boundary condition is employed to accurately capture unsteady wake propagation between the rotor and stator blades. The predicted dominant frequencies using the blade tip response signals are not harmonic to the engine order, which is the NSV. The blade vibration is torsionally coupled with highly oscillating blade pressure and is not damped out during the NSV. No resonance to the blade natural frequencies is found. The instability of tornado vortices in the vicinity of the rotor tip due to the strong interaction of incoming flow, tip vortex and tip leakage flow is the main cause of the NSV observed in this study.


2021 ◽  
Vol 39 (1) ◽  
pp. 227-234
Author(s):  
Khelifa Hami

This contribution represents a critical view of the advantages and limits of the set of mathematical models of the physical phenomena of turbulence. Turbulence models can be grouped into two categories, depending on how turbulent quantities are calculated: direct numerical simulations (DNS) and RANS (Reynolds Averaged Navier-Stokes Equations) models. The disadvantage of these models is that they require enormous computing power, inaccessible, especially for large and complicated geometries. For this reason, hybrid models (combinations between DNS and RANS methods) have been developed, for example, the LES (“Large Eddy Simulation”) or DES (“Detached Eddy Simulation”) models. They represent a compromise - are less precise than DNS, but more precise than RANS models. The results presented in this contribution will allow and facilitate future research in the field the choice of the model approach necessary for the case studies whatever their difficulty factor.


Author(s):  
Purvic Patel ◽  
Yunchao Yang ◽  
Gecheng Zha

Abstract This paper utilizes the Improved Delayed Detached Eddy Simulation (IDDES) to investigate the non-synchronous vibration (NSV) mechanism of a 1.5 stage high-speed axial compressor. The NSV occurs at a part speed in the rig test. A low diffusion E-CUSP approximate Riemann solver with a third order Weighted Essentially Non-Oscillating (WENO) scheme for the inviscid flux and a second order central differencing scheme for the viscous flux are employed to solve the 3D time accurate Navier-Stokes equations. The fully conservative sliding boundary condition is used to preserve the wake-propagation. The aerodynamic instability in the tip region induces two alternating low pressure regions near the leading and the trailing edge on the suction side of the rotor blade. It is observed that the circumferential tip vortex motion in the rotor passage above 75 % span and its coupling forces cause NSV at the operating speed. This instability moves in the counter-rotating direction in the rotational frame. The NSV results using URANS simulation is also presented for comparison. The predicted frequency with the IDDES and URANS using rigid blades agrees well with the measured frequency in the rig test. In addition to the NSV, the IDDES solver also captures the dominant engine order frequencies. The tip flow structures show the vortex filament with one end on the suction side of the rotor blade and other side terminating on the casing or the pressure side of the rotor blade.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Hong-Sik Im ◽  
Ge-Cheng Zha

An advanced hybrid Reynolds-Averaged Navier–Stokes/large eddy simulation (RANS/LES) turbulence model delayed detached eddy simulation (DDES) is conducted in thispaper to investigate the dynamic stall flows over 3D NACA0012 airfoil at 17 deg, 26 deg, 45 deg, and 60 deg angle of attack (AOA). The spatially filtered unsteady 3D Navier–Stokes equations are solved using a fifth-order weighted essentially nonoscillatory (WENO) reconstruction with a low diffusion E-CUSP (LDE) scheme for the inviscid fluxes and a conservative fourth-order central differencing for the viscous terms. An implicit second-order time marching scheme with dual time stepping is employed to achieve high stability and convergency rate. A 3D flat plate is validated for the DDES model. For quantitative prediction of lift and drag of the stalled NACA0012 airfoil flows, the detached eddy simulation (DES) and DDES achieve much more accurate results than the Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulation. In addition to the quantitative difference, the DES/DDES and URANS also obtain qualitatively very different unsteady stalled flows of NACA0012 airfoil with different vortical structures and frequencies. This may bring a significantly different prediction if those methods are used for fluid–structural interaction. For comparison purpose, a third-order WENO scheme with a second-order central differencing is also employed for the DDES stalled NACA0012 airfoil flows. Both the third- and fifth-order WENO schemes predict the stalled flow similarly for lift and drag at AOA less than 45 deg, while at AOA of 60 deg, the fifth-order WENO scheme shows better agreement with the experiment than the third-order WENO scheme. The high-order scheme of WENO 5 also resolves more small scales of flow structures than the second-order scheme. The prediction of the stalled airfoil flow using DDES with both the high-order scheme and second-order scheme is overall significantly more accurate than the URANS simulation.


Author(s):  
Hong-Sik Im ◽  
Xiangying Chen ◽  
Ge-Cheng Zha

This paper uses the advanced Delayed-Detached Eddy Simulation (DDES) of turbulence to simulate rotating stall inception of NASA Rotor 67. The rotor is a low-aspect-ratio transonic axial-flow fan with a tip speed of 429 m/s and a pressure ratio of 1.63. A full annulus simulation was employed with the time accurate compressible Navier-Stokes code in order to accurately capture the the formation of long-length disturbance and a short-length inception (spike). The validation for all numerical methods used in this study was accomplished by the comparisons of the CFD solutions with the test data in advance of unsteady simulations. Self-induced rotating stall development is simulated holding the same back pressure at the near stall experiment without any throttling. Spike type rotating stall occurs and rotates at roughly 50% of rotor speed counter to the rotation. After spike onset, rotating stall fully develops approximately within 2 rotor revolutions. Two distinct characteristics that can advance the mechanism of spike type rotating stall are observed. First, the passage shock is fully detached from rotor and decays during the spike inception. Consequently the shifted sonic line at the upstream of rotor allows stalling flow to propagate to the neighboring passage. Second, the trailing edge back flow contributes to the build up of a fully developed stall cell by pushing tip clearance flow toward blade leading edge and inducing tip spillage flow. Tip vortex originated from the leading edge dies out during spike inception as the swirl angle of incoming tip flow decreases, while in the unstalled passages it develops without breakdown. DDES challenge for the complete blade row reflects well the sequence of rotating stall and its unsteady behavior.


Author(s):  
Junsu Shin ◽  
Hong-Gye Sung

AbstractNon-reactive flows moving through a model scramjet were investigated using a delayed detached eddy simulation (DDES), which is a hybrid scheme combining Reynolds averaged Navier-Stokes scheme and a large eddy simulation. The three dimensional Navier-Stokes equations were solved numerically on a structural grid using finite volume methods. An in-house was developed. This code used a monotonic upstream-centered scheme for conservation laws (MUSCL) with an advection upstream splitting method by pressure weight function (AUSMPW+) for space. In addition, a 4th order Runge-Kutta scheme was used with preconditioning for time integration. The geometries and boundary conditions of a scramjet combustor operated by DLR, a German aerospace center, were considered. The profiles of the lower wall pressure and axial velocity obtained from a time-averaged solution were compared with experimental results. Also, the mixing efficiency and total pressure recovery factor were provided in order to inspect the performance of the combustor.


2013 ◽  
Vol 117 (1188) ◽  
pp. 213-231 ◽  
Author(s):  
J. Reneaux ◽  
V. Brunet ◽  
S. Esquieu ◽  
M. Meunier ◽  
S. Mouton

Abstract The engine/airframe integration design is one key differentiating factor for making efficient transport aircraft and this topic will become more important for future aircraft as the turbofan engine diameter is increased leading to a stronger engine-airframe interaction. Hopefully, the capabilities of advanced numerical simulations allow the involved complex phenomena to be taken into account and this is illustrated in this paper through several research studies: the use of the Reynolds averaged Navier-Stokes equations together with the drag extraction techniques to predict the drag, the simulation of unsteady complex interaction between the jet and the pylon with the zonal detached eddy simulation method, the pylon and nacelle design through multi disciplinary optimisation and the flow control technologies.


2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040078
Author(s):  
Chen Li ◽  
Qi-Long Guo ◽  
Dong Sun ◽  
Han-Xin Zhang

The prediction of heat transfer for blunt bodies in hypersonic flows remains a great challenge. In particular, the uncertainties are larger in the leeside due to the complexity of the wake flow. Generally, the heat transfer is over-predicted using the Reynolds-averaged Navier–Stokes (RANS) models. In this paper, the improved delayed detached eddy simulation (IDDES) method is used to simulate the Mach 6 flow around a scaled spherical capsule model. In addition, a low dissipative WENO scheme is used for inviscid fluxes and dual-time stepping method is applied for time advancement. Results are compared to experimental data for mean and instantaneous heat transfer in the leeside of the aftbody. It is shown that the integrated error is 75.49% for RANS while 35.69% for IDDES method. Moreover, the multi-scale structures in the separation region are also resolved well by the IDDES method.


Sign in / Sign up

Export Citation Format

Share Document