scholarly journals Jet Noise Receptivity to Nozzle-upstream Perturbations in Compressible Heated Jets

Author(s):  
Yee Chee See ◽  
Ghobad Amini ◽  
Christopher Koh ◽  
Matthias Ihme
Keyword(s):  
1976 ◽  
Vol 73 (4) ◽  
pp. 779-793 ◽  
Author(s):  
R. Mani

This paper continues the study of part 1 into the area of the noise of heated jets. First, this part of the study discusses how a convected wave equation approach based on Lilley's equation leads to additional dipole and simple source terms associated with the velocity fluctuations due to transverse gradients of the mean density of the flow. Once these source terms have been identified and roughly estimated, we revert to a plug-flow model of the jet flow (where now the jet temperature and jet density differ from the ambient values) to estimate the radiation of these singularities. Several novel physical aspects of hot-jet noise are uncovered by the analysis. Indeed the problem of hot-jet noise is the one where the greatest deviations from Lighthill's ideas on jet noise generation are evident. The results are applied to available data and a very satisfactory measure of agreement is obtained with respect to the various predictions of the theory. Mechanisms for ‘excess’ pure jet noise scaling onM6andM4are found to result from the density gradients of the mean flow. The satisfactory agreement with the data suggests a solution of the problem of scaling jet noise with regard to jet temperature effects. The ability to predict correctly the data also suggests that the jet temperature has very little effect on the turbulence source spectrum generating jet noise at least for jet exit velocities up to about 1·5 times the atmospheric speed of sound.


2017 ◽  
Vol 65 (2) ◽  
pp. 110-120 ◽  
Author(s):  
Zhe Chen ◽  
Jiu-Hui Wu ◽  
A-Dan Ren ◽  
Xin Chen ◽  
Zhen Huang

2021 ◽  
Vol 20 (1-2) ◽  
pp. 4-34
Author(s):  
Reda R Mankbadi ◽  
Saman Salehian

In this work we propose replacing the conventional flat-surface airframe that shields the engine by a wavy surface. The basic principle is to design a wavy pattern to reflect the incoming near-field flow and acoustic perturbations into waves of a particular dominant frequency. The reflected waves will then excite the corresponding frequency of the large-scale structure in the initial region of the jet’s shear layer. By designing the frequency of the reflected waves to be the harmonic of the fundamental frequency that corresponds to the radiated peak noise, the two frequency-modes interact nonlinearly. With the appropriate phase difference, the harmonic dampens the fundamental as it extracts energy from it to amplify. The outcome is a reduction in the peak noise. To evaluate this concept, we conducted Detached Eddy Simulations for a rectangular supersonic jet with and without the wavy shield and verified our numerical results with experimental data for a free jet, as well as, for a jet with an adjacent flat surface. Results show that the proposed wavy surface reduces the jet noise as compared to that of the corresponding flat surface by as much as 4 dB.


AIAA Journal ◽  
2010 ◽  
Vol 48 (2) ◽  
pp. 510-511
Author(s):  
K. Viswanathan ◽  
M. J. Czech
Keyword(s):  

1993 ◽  
Author(s):  
Philip Morris ◽  
Thonse Bhat
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document