ejector nozzle
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 21)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 11 (24) ◽  
pp. 11954
Author(s):  
He Li ◽  
Xiaodong Wang ◽  
Hailong Huang ◽  
Jiuxin Ning ◽  
Jiyuan Tu

The spontaneous condensation of wet steam often occurs in the steam ejector nozzle, this deteriorates the performance of the steam ejector. In this paper, we take changing the geometric parameters of the nozzle as the focus of our research and construct an internal connection between steam’s condensation behavior and the nozzle’s throat radius, the nozzle’s divergent section expansion angle, and the nozzle’s divergent section length. Our numerical simulation results indicate that an increase in the throat diameter and reduction of the divergent section’s expansion angle can inhibit steam condensation behavior, to a certain extent. In particular, the steam condensation behavior will disappear at a 0° expansion angle, but it is not affected by the change in the divergent section’s length. In addition, the irreversibility that is seen under different changes to the nozzle’s structure parameters was investigated and the results show that the entropy generation that is caused by a phase change accounts for a much higher proportion of the total entropy generation than heat transport and viscous dissipation do. This indicates that steam’s condensation behavior makes a large amount of irreversible energy, resulting in energy waste and reducing the performance of the nozzle. Therefore, this study can provide a theoretical reference for suppressing the spontaneous condensation behavior of steam by changing the nozzle’s geometry.


2021 ◽  
pp. 20-27
Author(s):  
Олександра Валеріївна Сосновська ◽  
Олександр Євгенович Золотько ◽  
Олена Василівна Золотько ◽  
Віталій Васильович Столярчук

The subject of research in the article is engines operating on the detonation principle of converting the energy of the working fluid. In recent years, there has been an exponential growth in the number of scientific papers devoted to detonation engines, and the most promising direction is the study of detonation engines with an ejector nozzle (EN). The work aims to obtain the results of studies of the defining characteristics of a detonation engine with an ejector nozzle. The main tasks are the scientific analysis of the working process of the pulse detonation engine with EN; modeling of working processes occurring in the flow path of the engine; numerical implementation of a mathematical model and a computational experiment. Methods, for the numerical implementation of the model of a detonation engine with an ejector, a finite-difference TVD scheme of the second order of accuracy was used. According to the results of the work performed, we observe two regions on the pressure curves, within which the pressure remains unchanged for a certain time interval (pressure plateau). An increase in the length of the ejector leads to an increase in the duration of the stage of the outflow of detonation products from the flow path of the engine, an increase in the added mass of atmospheric air, and contributes to a significant increase in the specific impulse of thrust. The value of the thrust impulse was obtained by integrating the excess pressure on the traction wall over time. Conclusions. The scientific novelty is as follows. The change in pressure overtime on the traction wall of the detonation chamber when using cylindrical EHs of different lengths was investigated by the method of numerical simulation. The value of the thrust coefficient of the ejector nozzle for the starting conditions is obtained. The studies carried out in this work are aimed at analyzing the operating mode of a promising propulsion system and are aimed at modeling the gas-dynamic processes of a pulsed detonation engine with an ejector to obtain the data necessary for preliminary design, consideration of alternative design options, and an operational assessment of the possible characteristics of an engine with an ejector. The main advantages of the engine are the ultra-high-speed of energy release in the detonation process, which leads to an increase in the efficiency of the thermodynamic cycle, simplification and cost reduction of the design, and a significant gain in in-flight performance.


Author(s):  
Shahad Jamal

The research aims to understand the design parameters of steam ejector nozzle on the performance of flash evaporation induced by the effect of a steam jet passing through it. The research concentrates on studying the effect of ejector nozzle outlet diameter on induced flow from preheated water in a specified evaporator using a subsonic ejector. The thermal energy extracted from the condensed steam mixture in the condenser is used to heat the water in the evaporator. The experimental tests investigate the effect of nozzle geometry on the induced evaporation process by changing nozzle outlet diameter while keeping the pressure of evaporator, condenser and primary steam constant. The experimental results proved that both primary and secondary steam mass flow rates increase versus nozzle outlet diameter, while the entrainment ratio of secondary to primary steam flow rates decreases due to the restricted increase of the secondary steam mass flow rate. The mathematical model prepared to simulate the behaviour of the subsonic ejector is validated using the comparison between experimental and theoretical results. The mathematical model showed that maximum entrainment of 0.57 is obtained at a primary steam pressure of 2 bars when the nozzle outlet diameter is fixed at 1.5 mm, while minimum entrainment ratio of 0.17 is estimated at 1.5 bar pressure related to primary steam when the nozzle outlet diameter is fixed at 2.5mm. The authors recommend defining nozzle geometrical parameters according to the operating conditions of the experimental test rig to enhance ejector efficiency.


Author(s):  
G. O. Voropaiev ◽  
Ia. V. Zagumennyi ◽  
N. V. Rozumnyuk

The paper presents the numerical results on gas-dynamic processes in various elements of the impulse ejector, including pre-chamber, supersonic nozzle and mixing chamber, to determine optimal geometric parameters providing the given flow rate characteristics. At an extra-high pressure of the ejecting gas (>100 bar) it is impossible to create a nozzle design with continuously changing cross-sectional area and limited nozzle length. So, it is necessary to place a pre-chamber between the gas generator and the ejector nozzle for throttling full gas pressure. In order to optimize the pre-chamber parameters in the ejector with discrete holes of the gas generator and the operating pressure in the range of 400÷1000 bar, a series of calculations were performed to determine the pre-chamber parameters, ensuring stable operation of the supersonic annular nozzle at the high pressure of 35÷45 bar and the flow rate of 0.5÷0.6 kg/s. 3D numerical simulation of the gas flow into the pre-chamber through the gas generator holes shows the degree of the flow pattern non-uniformity in the pre-chamber at the ejector nozzle inlet is quite low. This justifies the numerical simulation of gas flow in the ejector in axisymmetric formulation and allows restricting the number of the gas generator holes without inducing significant non-uniformity in the azimuthal direction.


Author(s):  
Yuming Yang ◽  
Li Zhou ◽  
Jingwei Shi

Abstract TBCC ejector nozzle is the key component of the propulsion system of hypersonic vehicle to increase the thrust characteristic of the whole envelope. Aiming at the exhaust system of TBCC engine with the first stage of Ma 0 ∼ 3, the complex internal and external flow interference characteristics of TBCC ejector nozzle are analyzed and the influence of key aerodynamic and geometric parameters are studied. 1) The secondary throat produces a strong oblique shock wave in the primary flow, that reflects with the oblique shock wave at the exit of the nozzle and forms the complex flow field characteristics of the ejector nozzle. 2) The introduction of the secondary flow will not change the flow field structure of the nozzle, but can significantly reduce the intensity of shock system in the sleeve and improve the thrust performance of the nozzle; the aerodynamic throat of the primary flow appears separation because of the high pressure secondary flow, which resulting in the flow mismatching and choking of the primary nozzle. 3) Under the severe over expansion state, the thrust performance is higher when the expansion angle is reduced; The increase of the secondary throat diameter ratio can improve the over expansion state of the primary flow and increase the thrust performance; the increase of the spacing ratio causes the increase of the secondary mass rate and the decrease of the primary mass rate, but the thrust performance is less affected.


Author(s):  
А. Z. Bukayeva ◽  
◽  
V. V. Povetkin ◽  
B. Zh. Bektibay ◽  
Ye. K. Nurymov ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
Khairul Q. Zaman ◽  
Raymond S. Castner ◽  
James E. Bridges ◽  
Amy F. Fagan ◽  
Puja Upadhyay
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document