On the turbulent boundary layers developed on flat plate with a serrated trailing edge

Author(s):  
Alexandros Vathylakis ◽  
Tze Pei Chong
2000 ◽  
Vol 122 (3) ◽  
pp. 542-546 ◽  
Author(s):  
Anupam Dewan ◽  
Jaywant H. Arakeri

The intermittency profile in the turbulent flat-plate zero pressure-gradient boundary-layer and a thick axisymmetric boundary-layer has been computed using the Reynolds-averaged k−ε−γ model, where k denotes turbulent kinetic energy, ε its rate of dissipation, and γ intermittency. The Reynolds-averaged model is simpler compared to the conditional model used in the literature. The dissipation equation of the Reynolds-averaged model is modified to account for the effect of entrainment. It has been shown that the model correctly predicts the observed intermittency of the flows. [S0098-2202(00)02403-2]


Author(s):  
Ju Hyun Shin ◽  
Seung Jin Song

Based on flat plate results, mean velocity and friction coefficient estimation methods are proposed for rough surface turbulent boundary layers on axial compressor and turbine blades. The ratio of the displacement thickness to boundary layer thickness (δ*/δ) was first suggested by Zagarola and Smits (1998) for smooth pipe flows. The same parameter is proposed in this paper to scale the normalized mean velocity defect of smooth and rough surface flat plate turbulent boundary layers with zero, favorable, and adverse pressure gradients. The available mean velocity defect profiles of smooth and rough surface boundary layers from axial compressor and turbine blades are also scaled and compared to the flat plate results. Irrespective of the Reynolds number (Reθ), pressure gradient (K), and roughness (k), δ*/δ provides appropriate scaling for collapsing the flat plate and turbomachinery data. From the results, a new one-variable power law based on δ*/δ is proposed to estimate the mean velocity profile. The proposed power law can accurately estimate boundary layers on flat plates, compressor blades, and turbine blades. Finally, a new empirical Cf correlation is proposed for rough surface turbulent boundary layers under pressure gradients. The proposed Cf correlation is based on that of Bergstrom et al. (2005) and newly incorporates the acceleration parameter K. It can accurately estimate Cf in turbulent boundary layers of rough surface flat plates as well as those of smooth turbine blades.


2001 ◽  
Vol 123 (2) ◽  
pp. 394-400 ◽  
Author(s):  
Ram Balachandar ◽  
D. Blakely ◽  
M. Tachie ◽  
G. Putz

An experimental study was undertaken to investigate the characteristics of turbulent boundary layers developing on smooth flat plate in an open channel flow at moderately high Froude numbers (0.25<Fr<1.1) and low momentum thickness Reynolds numbers 800<Reθ<2900. The low range of Reynolds numbers and the high Froude number range make the study important, as most other studies of this type have been conducted at high Reynolds numbers and lower Froude numbers (∼0.1). Velocity measurements were carried out using a laser-Doppler anemometer equipped with a beam expansion device to enable measurements close to the wall region. The shear velocities were computed using the near-wall measurements in the viscous subregion. The variables of interest include the longitudinal mean velocity, the turbulence intensity, and the velocity skewness and flatness distributions across the boundary layer. The applicability of a constant Coles’ wake parameter (Π=0.55) to open channel flows has been discounted. The effect of the Froude number on the above parameters was also examined.


1958 ◽  
Vol 2 (01) ◽  
pp. 21-33
Author(s):  
L. Landweber ◽  
T. T. Siao

In a recent paper (1) it was indicated that there appeared to be a need for generalizing the well-known logarithmic law of turbulent boundary layers and such a generalization was derived on the basis of a suggestion due to Townsend (2). It was found that the logarithmic formulas constitute only one member of a family of possible formulas, among which that one which best fits the boundary-layer data should be selected.


Sign in / Sign up

Export Citation Format

Share Document