A Study on Turbulent Boundary Layers on a Smooth Flat Plate in an Open Channel

2001 ◽  
Vol 123 (2) ◽  
pp. 394-400 ◽  
Author(s):  
Ram Balachandar ◽  
D. Blakely ◽  
M. Tachie ◽  
G. Putz

An experimental study was undertaken to investigate the characteristics of turbulent boundary layers developing on smooth flat plate in an open channel flow at moderately high Froude numbers (0.25<Fr<1.1) and low momentum thickness Reynolds numbers 800<Reθ<2900. The low range of Reynolds numbers and the high Froude number range make the study important, as most other studies of this type have been conducted at high Reynolds numbers and lower Froude numbers (∼0.1). Velocity measurements were carried out using a laser-Doppler anemometer equipped with a beam expansion device to enable measurements close to the wall region. The shear velocities were computed using the near-wall measurements in the viscous subregion. The variables of interest include the longitudinal mean velocity, the turbulence intensity, and the velocity skewness and flatness distributions across the boundary layer. The applicability of a constant Coles’ wake parameter (Π=0.55) to open channel flows has been discounted. The effect of the Froude number on the above parameters was also examined.

1999 ◽  
Vol 121 (3) ◽  
pp. 684-689 ◽  
Author(s):  
Ram Balachandar ◽  
Shyam S. Ramachandran

The results of an experimental investigation of turbulent boundary layers in shallow open channel flows at low Reynolds numbers are presented. The study was aimed at extending the database toward lower values of Reynolds number. The data presented are primarily concerned with the longitudinal mean velocity, turbulent-velocity fluctuations, boundary layer shape parameter and skin friction coefficient for Reynolds numbers based on the momentum thickness (Reθ) ranging from 180 to 480. In this range, the results of the present investigation in shallow open channel flows indicate a lack of dependence of the von Karman constant κ on Reynolds number. The extent to which the mean velocity data overlaps with the log-law decreases with decreasing Reθ. The variation of the strength of the wake with Reθ is different from the trend proposed earlier by Coles.


2018 ◽  
Vol 851 ◽  
pp. 391-415 ◽  
Author(s):  
M. Samie ◽  
I. Marusic ◽  
N. Hutchins ◽  
M. K. Fu ◽  
Y. Fan ◽  
...  

Fully resolved measurements of turbulent boundary layers are reported for the Reynolds number range $Re_{\unicode[STIX]{x1D70F}}=6000{-}20\,000$. Despite several decades of research in wall-bounded turbulence there is still controversy over the behaviour of streamwise turbulence intensities near the wall, especially at high Reynolds numbers. Much of it stems from the uncertainty in measurement due to finite spatial resolution. Conventional hot-wire anemometry is limited for high Reynolds number measurements due to limited spatial resolution issues that cause attenuation in the streamwise turbulence intensity profile near the wall. To address this issue we use the nano-scale thermal anemometry probe (NSTAP), developed at Princeton University to conduct velocity measurements in the high Reynolds number boundary layer facility at the University of Melbourne. The NSTAP has a sensing length almost one order of magnitude smaller than conventional hot-wires. This enables us to acquire fully resolved velocity measurements of turbulent boundary layers up to $Re_{\unicode[STIX]{x1D70F}}=20\,000$. Results show that in the near-wall region, the viscous-scaled streamwise turbulence intensity grows with $Re_{\unicode[STIX]{x1D70F}}$ in the Reynolds number range of the experiments. A second outer peak in the streamwise turbulence intensity is also shown to emerge at the highest Reynolds numbers. Moreover, the energy spectra in the near-wall region show excellent inner scaling over the small to moderate wavelength range, followed by a large-scale influence that increases with Reynolds number. Outer scaling in the outer region is found to collapse the energy spectra over high wavelengths across various Reynolds numbers.


Author(s):  
Ju Hyun Shin ◽  
Seung Jin Song

Based on flat plate results, mean velocity and friction coefficient estimation methods are proposed for rough surface turbulent boundary layers on axial compressor and turbine blades. The ratio of the displacement thickness to boundary layer thickness (δ*/δ) was first suggested by Zagarola and Smits (1998) for smooth pipe flows. The same parameter is proposed in this paper to scale the normalized mean velocity defect of smooth and rough surface flat plate turbulent boundary layers with zero, favorable, and adverse pressure gradients. The available mean velocity defect profiles of smooth and rough surface boundary layers from axial compressor and turbine blades are also scaled and compared to the flat plate results. Irrespective of the Reynolds number (Reθ), pressure gradient (K), and roughness (k), δ*/δ provides appropriate scaling for collapsing the flat plate and turbomachinery data. From the results, a new one-variable power law based on δ*/δ is proposed to estimate the mean velocity profile. The proposed power law can accurately estimate boundary layers on flat plates, compressor blades, and turbine blades. Finally, a new empirical Cf correlation is proposed for rough surface turbulent boundary layers under pressure gradients. The proposed Cf correlation is based on that of Bergstrom et al. (2005) and newly incorporates the acceleration parameter K. It can accurately estimate Cf in turbulent boundary layers of rough surface flat plates as well as those of smooth turbine blades.


1991 ◽  
Vol 230 ◽  
pp. 1-44 ◽  
Author(s):  
Lincoln P. Erm ◽  
Peter N. Joubert

An investigation was undertaken to improve our understanding of low-Reynolds-number turbulent boundary layers flowing over a smooth flat surface in nominally zero pressure gradients. In practice, such flows generally occur in close proximity to a tripping device and, though it was known that the flows are affected by the actual low value of the Reynolds number, it was realized that they may also be affected by the type of tripping device used and variations in free-stream velocity for a given device. Consequently, the experimental programme was devised to investigate systematically the effects of each of these three factors independently. Three different types of device were chosen: a wire, distributed grit and cylindrical pins. Mean-flow, broadband-turbulence and spectral measurements were taken, mostly for values of Rθ varying between about 715 and about 2810. It was found that the mean-flow and broadband-turbulence data showed variations with Rθ, as expected. Spectra were plotted using scaling given by Perry, Henbest & Chong (1986) and were compared with their models which were developed for high-Reynolds-number flows. For the turbulent wall region, spectra showed reasonably good agreement with their model. For the fully turbulent region, spectra did show some appreciable deviations from their model, owing to low-Reynolds-number effects. Mean-flow profiles, broadband-turbulence profiles and spectra were found to be affected very little by the type of device used for Rθ ≈ 1020 and above, indicating an absence of dependence on flow history for this Rθ range. These types of measurements were also compared at both Rθ ≈ 1020 and Rθ ≈ 2175 to see if they were dependent on how Rθ was formed (i.e. the combination of velocity and momentum thickness used to determine Rθ). There were noticeable differences for Rθ ≈ 1020, but these differences were only convincing for the pins, and there was a general overall improvement in agreement for Rθ ≈ 2175.


1972 ◽  
Vol 56 (2) ◽  
pp. 337-351 ◽  
Author(s):  
W. P. Jones ◽  
B. E. Launder

An experimental study of asymptotic sink-flow turbulent boundary layers is reported. Three levels of acceleration corresponding to values of the acceleration parameter K of 1·5 × 10−6, 2·5 × 10×6 and 3·0 × 10×6 have been examined. In addition to mean velocity profiles, measurements have been obtained of the profiles of longitudinal turbulence intensity, and, for the lowest value of K, of the lateral and transverse components as well. Measurements at selected positions in the boundary layer of the power spectral density indicate that none of the boundary layers exhibit an inertial subrange; for the steepest acceleration, in particular, throughout the boundary layer the spectrum shapes are similar in form to those reported within the viscous sublayer of a high Reynolds number turbulent flow.


1991 ◽  
Vol 44 (1) ◽  
pp. 1-25 ◽  
Author(s):  
M. R. Raupach ◽  
R. A. Antonia ◽  
S. Rajagopalan

This review considers theoretical and experimental knowledge of rough-wall turbulent boundary layers, drawing from both laboratory and atmospheric data. The former apply mainly to the region above the roughness sublayer (in which the roughness has a direct dynamical influence) whereas the latter resolve the structure of the roughness sublayer in some detail. Topics considered include the drag properties of rough surfaces as functions of the roughness geometry, the mean and turbulent velocity fields above the roughness sublayer, the properties of the flow close to and within the roughness canopy, and the nature of the organized motion in rough-wall boundary layers. Overall, there is strong support for the hypothesis of wall similarity: At sufficiently high Reynolds numbers, rough-wall and smooth-wall boundary layers have the same turbulence structure above the roughness (or viscous) sublayer, scaling with height, boundary-layer thickness, and friction velocity.


Author(s):  
Hassan M Nagib ◽  
Kapil A Chauhan ◽  
Peter A Monkewitz

Flat plate turbulent boundary layers under zero pressure gradient at high Reynolds numbers are studied to reveal appropriate scale relations and asymptotic behaviour. Careful examination of the skin-friction coefficient results confirms the necessity for direct and independent measurement of wall shear stress. We find that many of the previously proposed empirical relations accurately describe the local C f behaviour when modified and underpinned by the same experimental data. The variation of the integral parameter, H , shows consistent agreement between the experimental data and the relation from classical theory. In accordance with the classical theory, the ratio of Δ and δ asymptotes to a constant. Then, the usefulness of the ratio of appropriately defined mean and turbulent time-scales to define and diagnose equilibrium flow is established. Next, the description of mean velocity profiles is revisited, and the validity of the logarithmic law is re-established using both the mean velocity profile and its diagnostic function. The wake parameter, Π , is shown to reach an asymptotic value at the highest available experimental Reynolds numbers if correct values of logarithmic-law constants and an appropriate skin-friction estimate are used. The paper closes with a discussion of the Reynolds number trends of the outer velocity defect which are important to establish a consistent similarity theory and appropriate scaling.


Sign in / Sign up

Export Citation Format

Share Document