Numerical Simulation of the Thermal Effect in the Cavitating Venturi Flow

2013 ◽  
Author(s):  
Donggang Cao ◽  
Guo-qiang He ◽  
Hong-liang Pan ◽  
Fei Qin
2011 ◽  
Vol 396-398 ◽  
pp. 2507-2510 ◽  
Author(s):  
Li Jing Zhang ◽  
You Qiang Wang

Based on Reynolds equation, the numerical simulation of thermal elstohydronamic lubrication for seawater-lubricated thordon bearing was carried out, the effects of the load, the speed and the shaft diameter on the pressure and the film thickness were discussed. The results show that thermal effect has little effect on the pressure, but the film thickness under the thermal condition is smaller than isothermal. The pressure peak is increased and the film thickness is decreased greatly with the increase of load. The pressure peak is decreased and the film thickness is increased greatly with the increase of speed.


2021 ◽  
Vol 20 (2) ◽  
pp. 74-82
Author(s):  
D. V. Fomin ◽  
M. A. Barulinа ◽  
A. V. Golikov ◽  
D. O. Strukov ◽  
A. S. German ◽  
...  

The thermal fields of the Photon-Amur 2.0 payload electronic board developed for nanosatellites were studied. The Photon-Amur 2.0 payload consists of an electronic control board with a casing mounted in a nanosatellite and a remote panel with experimental photovoltaic converters. A modified heat balance method was used for numerical simulation of the thermal fields of the control board and the casing. The constructed model and the obtained results of the numerical simulation were verified by comparison with the thermal diagrams obtained for the Photon-Amur 2.0 electronic board under normal operating conditions. For modeling the outer space operating conditions, it was assumed that there is a vacuum outside and inside the Photon-Amur 2.0 casing, and the thermal effect is transmitted from the nanosatellite racks to the payload electronic board through the fastenings. The thermal effect is of a periodic nature with amplitude of 45 to +80○C and a period of 96 min, which approximately corresponds to the motion of a nanosatellite in a 575 km-high orbit. It was demonstrated that with such composition of the payload module, its casing can work as a passive thermoregulator of thermal fields on the electronic board of Photon-Amur 2.0. The simulation showed that the casing helps to keep the temperature on the control board in the interval of 15C to +85C, which is acceptable for the electronic components used on the payload control board.


2010 ◽  
Vol 22 (11) ◽  
pp. 2531-2534 ◽  
Author(s):  
郑艳丽 Zheng Yanli ◽  
杜太焦 Du Taijiao ◽  
束庆邦 Shu Qingbang ◽  
王建国 Wang Jianguo

2021 ◽  
Vol 58 (1) ◽  
pp. 0114009
Author(s):  
章曦 Zhang Xi ◽  
李平雪 Li Pingxue ◽  
董雪岩 Dong Xueyan ◽  
杨卫鑫 Yang Weixin

2015 ◽  
Vol 29 (1) ◽  
pp. 190-197
Author(s):  
Donggang Cao ◽  
Guoqiang He ◽  
Hongliang Pan ◽  
Fei Qin

Author(s):  
T. Sato ◽  
S. Kitamura ◽  
T. Sueyoshl ◽  
M. Iwatukl ◽  
C. Nielsen

Recently, the growth process and relaxation process of crystalline structures were studied by observing a SI nano-pyramid which was built on a Si surface with a UHV-STM. A UHV-STM (JEOL JSTM-4000×V) was used for studying a heated specimen, and the specimen was kept at high temperature during observation. In this study, the nano-fabrication technique utilizing the electromigration effect between the STM tip and the specimen was applied. We observed Si atoms migrated towords the tip on a high temperature Si surface.Clean surfaces of Si(lll)7×7 and Si(001)2×l were prepared In the UHV-STM at a temperature of approximately 600 °C. A Si nano-pyramid was built on the Si surface at a tunneling current of l0nA and a specimen bias voltage of approximately 0V in both polarities. During the formation of the pyramid, Images could not be observed because the tip was stopped on the sample. After the formation was completed, the pyramid Image was observed with the same tip. After Imaging was started again, the relaxation process of the pyramid started due to thermal effect.


Sign in / Sign up

Export Citation Format

Share Document