The Thermal Elastohydrodynamic Lubrication Analysis of Seawater-Lubricated Thordon Bearing

2011 ◽  
Vol 396-398 ◽  
pp. 2507-2510 ◽  
Author(s):  
Li Jing Zhang ◽  
You Qiang Wang

Based on Reynolds equation, the numerical simulation of thermal elstohydronamic lubrication for seawater-lubricated thordon bearing was carried out, the effects of the load, the speed and the shaft diameter on the pressure and the film thickness were discussed. The results show that thermal effect has little effect on the pressure, but the film thickness under the thermal condition is smaller than isothermal. The pressure peak is increased and the film thickness is decreased greatly with the increase of load. The pressure peak is decreased and the film thickness is increased greatly with the increase of speed.

2015 ◽  
Vol 743 ◽  
pp. 85-90 ◽  
Author(s):  
Ning Dong ◽  
You Qiang Wang ◽  
Qian Liu ◽  
Xing Bao Huang

The elastohydrodynamic lubrication numerical analysis of water-lubricated tenmat bearing with single sine-type peak, single V-type valley and single rectangular-type valley was carried out by using the Reynolds equation. The results show that, for the bearing with single peak, the partial pressure peak appears and the corresponding film thickness increases rapidly and then decreases; With the increase of the amplitude of the sine function, the partial pressure of the lubricating film is also increased, the partial film thickness is decreased, as the wavelength increases, the pressure and the film thickness of the convex portion widened, the peak remains substantially unchanged. For the bearing with single V-type valley and single rectangular-type valley, the partial pressure are decreased, the partial film thickness are increased; with the amplitude of the roughness function increases, the partial pressure are decreased, on the contrary ,the partial film thickness are increased; with the wavelength increases, the pressure and the film thickness of the convex portion widened.


2010 ◽  
Vol 29-32 ◽  
pp. 857-861
Author(s):  
Jian Ping Liu ◽  
Xin Yi Zhang ◽  
Qing Xuan Jia

Considering lumen elastic deformation, Reynolds equation is deduced based on non-Newtonian model in this paper. Traction force and hydrodynamic mucus film thickness are calculated according to elastohydrodynamic lubrication theory. Compared with results based on Newtonian model and experiments, analysis based on non-Newtonian model reflects practical condition well. Lumen elastic deformation has some influence on traction force and mucus film thickness.


2020 ◽  
Vol 72 (10) ◽  
pp. 1139-1145
Author(s):  
Mingyu Zhang ◽  
Jing Wang ◽  
Jinlei Cui ◽  
Peiran Yang

Purpose The purpose of this paper is to numerically study the variations of oil film pressure, thickness and temperature rise in the contact zone of plate-pin pair in silent chains. Design/methodology/approach A steady-state thermal elastohydrodynamic lubrication (EHL) model is built using a Ree–Eyring fluid. The contact between the plate and the pin is simplified as a narrow finite line contact, and the lubrication state is examined by varying the geometry and the plate speed. Findings With increase in the equivalent radius of curvature, the pressure peak and the central film thickness increase. Because the plate is very thin, the temperature rise can be neglected. Even when the influence of the rounded corner region is less, a proper design can beneficially increase the minimum film thickness at both edges of the plate. Under a low entraining speed, strong stress concentration results in close-zero film thickness at both edges of the plate. Originality/value This study reveals the EHL feature of the narrow finite line contact in plate-pin pairs for silent chains and will support the future works considering transient effect, surface features and wear.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohamed Abd Alsamieh

Purpose The purpose of this paper is to study the behavior of a single ridge passing through elastohydrodynamic lubrication of point contacts problem for different ridge shapes and sizes, including flat-top, triangular and cosine wave pattern to get an optimal ridge profile. Design/methodology/approach The time-dependent Reynolds’ equation is solved using Newton–Raphson technique. Several shapes of surface feature are simulated and the film thickness and pressure distribution are obtained at every time step by simultaneous solution of the Reynolds’ equation and film thickness equation, including elastic deformation. Film thickness and pressure distribution are chosen to be the criteria in the comparisons. Findings The geometrical characteristics of the ridge play an important role in the formation of lubricant film thickness profile and the pressure distribution through the contact zone. To minimize wear, friction and fatigue life, an optimal ridge profile should have smooth shape with small ridge size. Obtained results are compared with other published numerical results and show a good agreement. Originality/value The study evaluates the performance of different surface features of a single ridge with different shapes and sizes passing through elastohydrodynamic of point contact problem in relation to film thickness and pressure profile.


2000 ◽  
Vol 122 (4) ◽  
pp. 711-720 ◽  
Author(s):  
Young S. Kang ◽  
Farshid Sadeghi ◽  
Xiaolan Ai

A model was developed to study the effects of a rigid debris on elastohydrodynamic lubrication of rolling/sliding contacts. In order to achieve the objectives the time dependent Reynolds equation was modified to include the effects of an ellipsoidal shaped debris. The modified time dependent Reynolds and elasticity equations were simultaneously solved to determine the pressure and film thickness in EHL contacts. The debris force balance equation was solved to determine the debris velocity. The model was then used to obtain results for a variety of loads, speeds, and debris sizes. The results indicate that the debris has a significant effect on the pressure distribution and causes a dent on the rolling/sliding bounding surfaces. Depending on the size and location of the debris the pressure generated within the contact can be high enough to plastically deform the bounding surfaces. Debris smaller than the minimum film thickness do not enter the contact and only large and more spherical debris move toward the contact. [S0742-4787(11)00501-7]


2014 ◽  
Vol 592-594 ◽  
pp. 1366-1370
Author(s):  
Tapash Jyoti Kalita ◽  
Punit Kumar

Elastohydrodynamic line contact simulations have been carried out in the present study. A practical situation of transient EHL film collapse has been analyzed. The aim is to observe the effect of variation of maximum Hertzian pressure (PH) on transient behavior of EHL film thickness (H).The analysis is based upon classical Reynolds equation considering time variation. The simulation results pertaining to EHL film thickness calculated using linear pressure-viscosity relationship have been compared for different values of load. It has been observed that film thickness reduces with increase in load. Similar results are obtained using exponential pressure-viscosity relationship and compared with those for linear pressure-viscosity. The EHL equations are solved by discretizing Reynolds equation and load equilibrium equation along with other equations using Newton-Raphson technique with the help of a computer code.


2013 ◽  
Vol 281 ◽  
pp. 329-334
Author(s):  
Jun He ◽  
Huang Ping ◽  
Qian Qian Yang

In the present paper, a new method for measuring elastohydrodynamic lubrication (EHL) pressure in line contact is proposed, which is based on the photoelastic technique. The pressure distribution of EHL film and the inner stresses in the friction pairs are fundamental issues to carry out EHL research. The film thickness, pressure and temperature have been successfully obtained with solving the basic equations such as Reynolds equation and energy equation simultaneously or separately, with numerical model of EHL problem. The film thickness can be also measured with the optical interference technique. However, the pressure measurement is still a problem which has not been well solved yet, so as the inner stresses inside the friction pairs. With the experimental mechanics, the photoelastic technique is a possible method to be used for measuring the pressure distribution of EHL film and inner friction pair in the line contact. Therefore, A flat plastic disk and a steel roller compose the frictional pairs of the photoelastic pressure measuring rig with combining the monochromatic LED light source, polarizer CCD camera and stereomicroscope to form the whole pressure measuring system of the line contact EHL. The experimental results with the rig display the typical features of EHL pressure. This shows that the method is feasible to be used for measuring the pressure of EHL film and the inner stresses of the friction pairs in the line contact.


Author(s):  
Binbin Zhang ◽  
Jing Wang

In the current study, in order to obtain a thick film thickness under zero entrainment velocity at low surface velocity, the effects of ambient viscosity, pressure–viscosity index of the lubricant, and the surface waviness are investigated numerically based on a thermal elastohydrodynamic lubrication mathematical model. The increasing ambient viscosity and modest waviness can deepen the dimple by a stronger “temperature-viscosity wedge” effect. With the combined effect of ambient viscosity, pressure–viscosity index, and surface waviness, a small centralized dimple in smooth contact evolves into a big classical one together with the disappearance of the former thin droopy film thickness.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
M. Masjedi ◽  
M. M. Khonsari

Three formulas are derived for predicting the central and the minimum film thickness as well as the asperity load ratio in line-contact EHL with provision for surface roughness. These expressions are based on the simultaneous solution to the modified Reynolds equation and surface deformation with consideration of elastic, plastic and elasto-plastic deformation of the surface asperities. The formulas cover a wide range of input and they are of the form f(W, U, G, σ¯, V), where the parameters represented are dimensionless load, speed, material, surface roughness and hardness, respectively.


2013 ◽  
Vol 694-697 ◽  
pp. 543-546 ◽  
Author(s):  
Xiu Jiang Shi ◽  
You Qiang Wang

Based on the Reynolds equation considering the temperature, the effection of non-newtonian and the magnetic field, the elastohydrodynamic lubrication(EHL) analysis of water-based ferrofluid journal bearing were carried out. The influence of roughness peak height and wavelength on the journal bearing surface with cosine roughness model were analysed. The results reveal that the pressure and film thickness of water-based ferrofluid wave apparently with roughness fluctuation; The fluctuation range of pressure and film thickness increase with the increase of roughness peak height, the minimal film thickness decreases; The pressure and film thickness fluctuation range become more and more sparse with the increase of roughness wavelength, the minimal film thickness increases.


Sign in / Sign up

Export Citation Format

Share Document