Analysis of Unsteady Behavior in Shock/Turbulent Boundary Layer Interactions with Large-Eddy Simulations

Author(s):  
Nathan Mullenix ◽  
Datta Gaitonde
Author(s):  
Young Seok Kang ◽  
Sangook Jun ◽  
Dong-Ho Rhee

Abstract Large eddy simulations on the well-known 7-7-7 fan shaped cooling hole were carried out. Like using a trip strip to create turbulent boundary layer in practical experiments, trip strips with different configurations were placed upstream of the cooling hole to investigate incoming turbulent boundary layer effect on the film cooling flow behavior. Without the trip, horseshoe vortex generated by laminar boundary layer induced laterally discharging cooling flow in the lateral direction. Meanwhile, the induced cooling flow formed high film cooling effectiveness region around the film cooling hole. When the incoming boundary flow was turbulent, laterally discharged cooling flow was influenced by the turbulent boundary layer to dissipate to the main flow and resultant high effectiveness region disappeared. Depending on the trip configuration, quantitative characteristics of boundary layer such as turbulent intensity, momentum thickness and shape factor were strongly affected. Some trip configurations resulted in fully developed turbulent boundary layer just before leading edge of the film cooling hole. In such cases, distribution of the film cooling effectiveness showed a reasonable agreement with available experimental data where the quantitative properties of the turbulent boundary layer were similar. However, when the trip was located too close to the film cooling hole, the separated and reattached flow did not develop into the stabilized turbulent boundary layer. Then strong turbulence intensity in the main flow boundary layer stimulated break down of the cooling flow vortex structure and early dissipation to the main flow. It resulted in restricted film cooling flow coverage.


Author(s):  
Steffen Stolz

Eddy-viscosity models such as the Smagorinsky model [1] are the most often employed subgrid-scale (SGS) models for large-eddy simulations (LES). However, for a correct prediction of the viscous sublayer of wall-bounded turbulent flows van-Driest wall damping functions or a dynamic determination of the constant [2] have to be employed. Alternatively, high-pass filtered (HPF) quantities can be used instead of the full velocity field for the computation of the subgrid-scale model terms. This approach has been independently proposed by Vreman [3] and Stolz et al. [4]. In this contribution we consider LES of a spatially developing supersonic turbulent boundary layer at a Mach number of 2.5 and momentum-thickness Reynolds numbers at inflow of approximately 4500, using the HPF Smagorinsky model. The model is supplemented by a HPF eddy-diffusivity ansatz for the SGS heat flux in the energy equation. Turbulent inflow conditions are generated by a rescaling and recycling technique proposed by [5] where the mean and fluctuating part of the turbulent boundary layer at some distance downstream of inflow is rescaled and reintroduced at inflow.


AIAA Journal ◽  
2006 ◽  
Vol 44 (12) ◽  
pp. 3032-3039 ◽  
Author(s):  
Donghyun You ◽  
Meng Wang ◽  
Rajat Mittal ◽  
Parviz Moin

Author(s):  
F. Hammer ◽  
Neil D. Sandham ◽  
Richard D. Sandberg

Large eddy simulations of a linear low-pressure turbine cascade with the T106A profile and different surface roughness patches were carried out. The aim was to investigate the effects on the laminar and turbulent boundary layer on the blade suction surface. Two different approaches were used to represent the roughness patches. Firstly, a forcing model, reducing the computational costs compared to fully resolved roughness surfaces, was incorporated. Secondly, an immersed boundary method representing an as-cast roughness surface was used, for a more detailed analysis of flow mechanisms over roughness. It was found that the roughness model was able to induce boundary layer transition and alter the turbulent boundary layer, with the results in line with findings in the literature. The instantaneous flow data at different time instants of the as-cast roughness case showed the development of streaks due to distinct roughness peaks, resulting in highly uneven transition positions across the spanwise direction.


Sign in / Sign up

Export Citation Format

Share Document