scholarly journals Flow Separation Study in Stiff Ovalized Rocket Nozzles, Part II: Numerical Approach

Author(s):  
Sebastian Jack ◽  
Chloe Genin
2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Luying Zhang ◽  
Francesco Congiu ◽  
Xiaopeng Gan ◽  
David Karunakara

The performance of the radial diffuser of a low pressure (LP) steam turbine is important to the power output of the turbine. A reliable and robust prediction and optimization tool is desirable in industry for preliminary design and performance evaluation. This is particularly critical during the tendering phase of retrofit projects, which typically cover a wide range of original equipment manufacturer and other original equipment manufacturers designs. This work describes a fast and reliable numerical approach for the simulation of flow in the last stage and radial diffuser coupled with the exhaust hood. The numerical solver is based on a streamline curvature throughflow method and a geometry-modification treatment has been developed for off-design conditions, at which large-scale flow separation may occur in the diffuser domain causing convergence difficulty. To take into account the effect of tip leakage jet flow, a boundary layer solver is coupled with the throughflow calculation to predict flow separation on the diffuser lip. The performance of the downstream exhaust hood is modeled by a hood loss model (HLM) that accounts for various loss generations along the flow paths. Furthermore, the solver is implemented in an optimization process. Both the diffuser lip and hub profiles can be quickly optimized, together or separately, to improve the design in the early tender phase. 3D computational fluid dynamics (CFD) simulations are used to validate the solver and the optimization process. The results show that the current method predicts the diffuser/exhaust hood performance within good agreement with the CFD calculation and the optimized diffuser profile improves the diffuser recovery over the datum design. The tool provides General Electric the capability to rapidly optimize and customize retrofit diffusers for each customer considering different constraints.


Author(s):  
Luying Zhang ◽  
Francesco Congiu ◽  
Xiaopeng Gan ◽  
David Karunakara

The performance of the radial diffuser of a low pressure (LP) steam turbine is important to the power output of the turbine. A reliable and robust prediction and optimization tool is desirable in industry for preliminary design and performance evaluation. This is particularly critical during the tendering phase of retrofit projects which typically cover a wide range of OEM and oOEMs designs. This work describes a fast and reliable numerical approach for the simulation of flow in the last stage and radial diffuser coupled with the exhaust hood. The numerical solver is based on a streamline curvature throughflow method and a geometry-modification treatment has been developed for off-design conditions, at which large scale flow separation may occur in the diffuser domain causing convergence difficulty. To take into account the effect of tip leakage jet flow, a boundary layer solver is coupled with the throughflow calculation to predict flow separation on the diffuser lip. The performance of the downstream exhaust hood is modeled by a hood loss model (HLM) that accounts for various loss generations along the flow paths. Furthermore, the solver is implemented in an optimization process. Both the diffuser lip and hub profiles can be quickly optimized, together or separately, to improve the design in the early tender phase. 3D CFD simulations are used to validate the solver and the optimization process. The results show that the current method predicts the diffuser/exhaust hood performance within good agreement with the CFD calculation and the optimized diffuser profile improves the diffuser recovery over the datum design. The tool provides GE the capability to rapidly optimize and customize retrofit diffusers for each customer considering different constraints.


1991 ◽  
Vol 226 ◽  
pp. 257-289 ◽  
Author(s):  
P. Blondeaux ◽  
G. Vittori

In the present paper we determine the oscillatory flow generated by surface gravity waves near a sea bottom covered with large-amplitude ripples. The vorticity equation and Poisson equation for the stream function are solved by means of a numerical approach based on spectral methods and finite-difference approximations. In order to test the numerical algorithm and in particular the numerical scheme used to generate vorticity along the ripple profile, we also perform an asymptotic analysis, which holds as the timettends to zero. The main features of the time development of vorticity are analysed and particular attention is paid to the dynamics of the large vortices generated by flow separation at the ripple crests and along the ripple profile. Some of the results obtained by Longuet-Higgins (1981) are recovered; in particular, the present results show a vortex pair shed from the ripple crest every half-cycle. The determination of flow separation along the ripple profile induced by the pressure gradient and the inclusion of viscous effects allows us to obtain accurate quantitative results and detect some important phenomena never observed before.In particular it is shown that: (i) Whenever a vortex structure moves towards the bottom, a secondary vortex is generated near the ripple profile, which interacts with the primary vortex and causes it to move away from the bottom, (ii) Depending on the values of the parameters, the time development of the free shear layer shed from the ripple crest may produce two or even more vortex structures, (iii) Occasionally vortices generated previously may coalesce with the free shear layer shed from the ripple crest, generating a unique vortex structure.


2019 ◽  
Vol 12 (4) ◽  
pp. 180
Author(s):  
Harinaldi Harinaldi ◽  
Budiarso Budiarso ◽  
Fadli Cahya Megawanto ◽  
Riza Farrash Karim ◽  
Nely Toding Bunga ◽  
...  

2018 ◽  
Author(s):  
Vedant Bhuyar ◽  
Shiv Ram Suthar ◽  
Mohit Vijay ◽  
Prodyut R. Chakraborty

Sign in / Sign up

Export Citation Format

Share Document