scholarly journals Simulation-Based Airframe Noise Prediction of a Full-Scale, Full Aircraft

Author(s):  
Mehdi R. Khorrami ◽  
Ehab Fares
2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Chung-Won Lee ◽  
Jiseong Kim ◽  
Gi-Chun Kang

Vibration and noise problems caused by a number of construction processes, specifically blasting for infrastructure development, are becoming important because of their civil appeal. In this study, a square root equation (SRE) with a 95% confidence level was proposed for predicting blasting-induced vibration through full-scale test blasting, and the vibration value predicted from this equation was located between the values predicted from the USBM (US Department of Interior, Bureau of Mines), NOF (Nippon Oil & Fats Co., Ltd.), and MCT (Ministry of Construction and Transportation) equations. Additionally, by comparing the measured noise level at full-scale test blasting with the calculated noise levels from several noise prediction equations, it was determined that the noise level predicted by the ONECRC equation had the best agreement with the measured results. However, in cases where blasting includes tunnel excavation, simultaneous measurement of vibration and noise is required to prevent damage to the surrounding facilities.


1976 ◽  
Author(s):  
J. SHEARIN ◽  
D. FRATELLO ◽  
A. BOHN ◽  
W. BURGGRAF
Keyword(s):  

2013 ◽  
Vol 295-298 ◽  
pp. 2026-2029 ◽  
Author(s):  
Manandhar Ashish ◽  
Shuai Zhang ◽  
Xiong Qing Yu

The purpose of this paper is to present a tradeoff study of airframe noise and field length due to wing area and flap setting configuration during conceptual design. The aircraft takeoff and landing length is predicted by the Matlab synthesis code for airliner conceptual design. The NASA’s Aircraft Noise Prediction Program (ANOPP) is used to evaluate the airframe noise signature. It is found that: (1) with the increase in wing area both the landing and takeoff field length will be reduced, and approach noise decreases whereas the takeoff noise increases; (2) with the increase in flap setting from 50 to 200, both landing and takeoff field length reduces but the noise level increases during takeoff and decreases during the approach. The results can help designers to select suitable values of wing area and flap setting to meet both the requirements of field length and noise levels.


Sign in / Sign up

Export Citation Format

Share Document