Multidisciplinary Design Optimization Research of overall Aero-engine based on Flow Path

Author(s):  
Xiuli Shen ◽  
Wentong Hu
Author(s):  
Xiao-bo Zhang ◽  
Zhan-xue Wang ◽  
Li Zhou ◽  
Zeng-wen Liu

AbstractIn order to obtain better integrated performance of aero-engine during the conceptual design stage, multiple disciplines such as aerodynamics, structure, weight, and aircraft mission are required. Unfortunately, the couplings between these disciplines make it difficult to model or solve by conventional method. MDO (Multidisciplinary Design Optimization) methodology which can well deal with couplings of disciplines is considered to solve this coupled problem. Approximation method, optimization method, coordination method, and modeling method for MDO framework are deeply analyzed. For obtaining the more efficient MDO framework, an improved CSSO (Concurrent Subspace Optimization) strategy which is based on DOE (Design Of Experiment) and RSM (Response Surface Model) methods is proposed in this paper; and an improved DE (Differential Evolution) algorithm is recommended to solve the system-level and discipline-level optimization problems in MDO framework. The improved CSSO strategy and DE algorithm are evaluated by utilizing the numerical test problem. The result shows that the efficiency of improved methods proposed by this paper is significantly increased. The coupled problem of VCE (Variable Cycle Engine) conceptual design is solved by utilizing improved CSSO strategy, and the design parameter given by improved CSSO strategy is better than the original one. The integrated performance of VCE is significantly improved.


Author(s):  
Robert Jaron ◽  
Antoine Moreau ◽  
Sébastien Guérin ◽  
Lars Enghardt ◽  
Timea Lengyel-Kampmann ◽  
...  

Abstract Due to the increasing bypass ratios of modern engines, the fan stage is increasingly becoming the dominant source of engine noise. Accordingly, it is becoming more and more important to develop not only efficient but also quiet fan stages. In this paper the noise emission of a fan for an aero-engine with a bypass ratio of 19 is reduced within a multidisciplinary design optimization (MDO) by means of an hybrid noise prediction method while at the same time optimizing the aerodynamic efficiency. The aerodynamic performance of each configuration in the optimization is evaluated by stationary Reynolds-Averaged Navier-Stokes (RANS) simulations. These stationary flow simulations are also used to extract the aerodynamic excitation sources for the analytical fan noise prediction. The resulting large database of the optimization provides new insights into which extent an MDO can contribute to the design of both quiet and efficient fan stages. In addition to that the hybrid approach of numerical flow solutions and analytical description of the noise sources enables to understand the noise reduction mechanisms. In particular, the influence of rotor blade loading on the aerodynamic efficiency and the noise sources as well as the potential of configurations with a comparatively low number of outlet guide vanes (OGV) is explored. The acoustic results of selected configurations are confirmed by unsteady RANS simulations.


Author(s):  
Xiuli Shen ◽  
Dan Long

The design of an aero-engine is traditionally divided into three levels: conceptual design, preliminary design and detailed design. This three-step design process is inherently iterative, which can slow the design process and overall productivity. Additionally, as an integrated systems engineering analysis, aero-engine design involves multiple-disciplines. The complex coupled-relationship among multiple-disciplines and multiple-components gives rise to severe conflict with performance requirements when designing, especially when it comes to high-performance aero-engine. Traditionally, designers need to empirically balance all kinds of requirements, which lead to a longer design cycle. So it is necessary to apply Multidisciplinary Design Optimization (MDO) to organize and manage the process of design system which sufficiently utilizes the effect of interaction of multidisciplines for the optimal solution. The MDO of a turbine flow path is one of the key multidisciplinary optimization technologies in aeroengine overall design. The problem studied and presented in this paper consists in optimizing a turbine modeled by a multidisciplinary system of two coupled disciplines: turbine aerodynamics and structural strength, with temperature limited by the materials. In the present work, three modules are established to conduct the MDO research of turbine flow path: flow path design, turbine strength calculation and MDO. The aeroengine turbine flow path, including high and low pressure turbine flow path, is designed in the first module, with its efficiency estimated. In the second module, turbine rotors consisting of blades, discs and the low spool shaft are parametric modeled so as to analyze the structural aspects of turbine rotors, such as weight and stresses. MDO is conducted using multi-island genetic algorithm optimization (MIGA) optimization algorithm provided in iSIGHT software. Fully Integrated Optimization (FIO) strategy is studied to deal with the multidisciplinary analysis. The complex coupling relations between aerodynamic performance and turbine strength are analyzed to establish turbine multidisciplinary optimization system. The optimal values of loading coefficient, rotational speed, bore diameter of rotor discs defined by the shaft size, and other independent design variables are obtained in order to achieve minimum weight of turbine rotors while simultaneously meeting the strength and aerodynamics efficiency requirements. This method presented in this paper can greatly shorten turbine design cycle, improve aeroengine design ability, and is prospective to be widely applied to engineering field.


2021 ◽  
pp. 1-38
Author(s):  
Robert Jaron ◽  
Antoine Moreau ◽  
Sébastien Guérin ◽  
Lars Enghardt ◽  
Timea Lengyel ◽  
...  

Abstract Due to the increasing bypass ratios of modern engines, the fan stage is increasingly becoming the dominant source of engine noise. Accordingly, it is becoming more and more important to develop not only efficient but also quiet fan stages. In this paper the noise emission of a fan for an aero-engine with bypass ratio of 19 is reduced within a multidisciplinary design optimization (MDO) by means of a hybrid noise prediction method while at the same time optimizing the aerodynamic efficiency. The aerodynamic performance of each configuration in the optimization is evaluated by stationary Reynolds-Averaged Navier- Stokes (RANS) simulations. These stationary flow simulations are also used to extract the aerodynamic excitation sources for the analytical fan noise prediction. The resulting large database of the optimization provides new insights into which extent an MDO can contribute to the design of both quiet and efficient fan stages. In addition to that the hybrid approach of numerical flow solutions and analytical description of the noise sources enables to understand the noise reduction mechanisms. In particular, the influence of rotor blade loading on the aerodynamic efficiency and the noise sources as well as the potential of configurations with a comparatively low number of outlet guide vanes (OGV) is explored.


Sign in / Sign up

Export Citation Format

Share Document