Study on delta wing skin friction measurement based on liquid crystal coatings in hypersonic wind tunnel

Author(s):  
Xing Chen ◽  
Shuai Wen ◽  
Junjie Pan ◽  
Dapeng Yao
Author(s):  
Xing Chen ◽  
Bi Zhixian ◽  
Wen Shuai ◽  
Dapeng Yao ◽  
Junjie Pan

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3803
Author(s):  
Xiong Wang ◽  
Nantian Wang ◽  
Xiaobin Xu ◽  
Tao Zhu ◽  
Yang Gao

MEMS-based skin friction sensors are used to measure and validate skin friction and its distribution, and their advantages of small volume, high reliability, and low cost make them very important for vehicle design. Aiming at addressing the accuracy problem of skin friction measurements induced by existing errors of sensor fabrication and assembly, a novel fabrication technology based on visual alignment is presented. Sensor optimization, precise fabrication of key parts, micro-assembly based on visual alignment, prototype fabrication, static calibration and validation in a hypersonic wind tunnel are implemented. The fabrication and assembly precision of the sensor prototypes achieve the desired effect. The results indicate that the sensor prototypes have the characteristics of fast response, good stability and zero-return; the measurement ranges are 0–100 Pa, the resolution is 0.1 Pa, the repeatability accuracy and linearity are better than 1%, the repeatability accuracy in laminar flow conditions is better than 2% and it is almost 3% in turbulent flow conditions. The deviations between the measured skin friction coefficients and numerical solutions are almost 10% under turbulent flow conditions; whereas the deviations between the measured skin friction coefficients and the analytical values are large (even more than 100%) under laminar flow conditions. The error resources of direct skin friction measurement and their influence rules are systematically analyzed.


2016 ◽  
Vol 23 (8) ◽  
pp. 3601-3611 ◽  
Author(s):  
Xiong Wang ◽  
Tao Zhu ◽  
Xiaobin Xu ◽  
Yunlong Shi ◽  
Huacheng Qiu ◽  
...  

Author(s):  
Hao Dong ◽  
Shicheng Liu ◽  
Xi Geng ◽  
Keming Cheng

Prediction of boundary layer transition is important for the design of hypersonic aircrafts. The study of boundary layer transition of hypersonic flow around a flat plate using oil-film interferometry was investigated at Φ500mm traditional hypersonic wind tunnel. In order to measure the skin friction fast and precisely on the hypersonic wind tunnel, the traditional oil-film interferometry technique is improved. A high-speed camera is used to capture the images of fringes and the viscosity of the silicon oil is modified according to the wall temperature measured by thermocouples during the test. The skin frictions of smooth surface and the surface with single square roughness element were measured. For the smooth surface, the boundary layer is laminar. However, the boundary layer transition is promoted by wake vortices induced by the roughness element. Both the results of skin friction with and without the roughness element are in good agreement with the simulation results correspondingly, indicating high accuracy of the oil film interferometry technique.


Author(s):  
Sudesh Woodiga ◽  
Tianshu Liu ◽  
RS Vewen Ramasamy ◽  
Sai Kumar Kode
Keyword(s):  

2014 ◽  
Vol 45 (1) ◽  
pp. 3-20 ◽  
Author(s):  
Ivan Vladimirovich Egorov ◽  
Boris Evgen'evich Zhestkov ◽  
Vladimir Viktorovich Shvedchenko

Sign in / Sign up

Export Citation Format

Share Document