Open Loop System Identification of a Small Multirotor Vehicle with an Active Feedback Control System

Author(s):  
Michael Cunningham ◽  
James E. Hubbard
Author(s):  
Zhi-Hua He ◽  
Yi-Ze Wang ◽  
Yue-Sheng Wang

AbstractUsing the active feedback control system on the elastic wave metamaterial, this research concentrates on the sound transmission with the dynamic effective model. The metamaterial is subjected to an incident pressure and immersed in the external mean flow. The elastic wave metamaterial consists of double plates and the upper and lower four-link mechanisms are attached inside. The vertical resonator is attached by the active feedback control system and connected with two four-link mechanisms. Based on the dynamic equivalent method, the metamaterial is equivalent as a single-layer plate by the dynamic effective parameter. With the coupling between the fluid and structure, the expression of the sound transmission loss (STL) is derived. This research shows the influence of effective mass density on sound transmission properties, and the STL in both modes can be tuned by the acceleration and displacement feedback constants. In addition, the dynamic response and the STL are also changed obviously by different values of structural damping, incident angle (i.e., the elevation and azimuth angles) and Mach number of the external fluid with the mean flow property. The results for sound transmission by two methods are compared, i.e., the virtual work principle for double plates and the dynamic equivalent method corresponding to a single one. This paper is expected to be helpful for understanding the sound transmission properties of both pure single- and double-plate models.


1986 ◽  
Vol 120 (1) ◽  
pp. 369-385 ◽  
Author(s):  
G. WEILAND ◽  
U. BÄSSLER ◽  
M. BRUNNER

An experimental arrangement was constructed which is based on the open-loop femur-tibia control system of two stick insect species (Carausius morosus and Cuniculina impigra). It could be artificially closed in the following way: the position of the tibia was measured by an optical device and this value was used to drive a penmotor which moved the receptor apodeme of the femoral chordotonal organ in the same way as in intact animals. This arrangement allows direct comparison of the behaviour of the open-loop and the closed-loop system as well as introducing an additional delay. The Carausius system has a phase reserve of only 30°-50° and the factor of feedback control approaches 1 between 1 and 2 Hz. This agrees with the observation that an additional delay of 70–200 ms produces long-lasting oscillations of 1–2 Hz. The Cuniculina system has a larger phase reserve and consequently a delay of 200 ms produced no oscillations. All experiments show that extrapolation from the open-loop system to the closed-loop system is valid, despite the non-linear characteristics of the loop. Consequences for servo-mechanisms during walking and rocking movements are discussed.


2020 ◽  
Vol 27 (5) ◽  
pp. 052502
Author(s):  
Yanqi Wu ◽  
Hong Li ◽  
Yolbarsop Adil ◽  
Yuan Zhang ◽  
Wentan Yan ◽  
...  

1994 ◽  
Vol 116 (2) ◽  
pp. 309-313 ◽  
Author(s):  
Jenq-Tzong H. Chan

A method to synthesize decoupled multivariable control system from a batch of plant test data is introduced. The method is applicable when the system has more inputs than outputs and is open-loop stable. An advantage of this method is that explicit identification of an open-loop system model is not required for controller synthesis.


Sign in / Sign up

Export Citation Format

Share Document